

Hochschule Neubrandenburg University of Applied Sciences

Vermessung des

Basisnetzes in der Torushalle

am Fusionsexperiment Wendelstein 7-X

Vergleich verschiedener Präzisionshöhenübertragungsverfahren und Gesamtausgleich des Netzes.

DIPLOMARBEIT

im Studiengang Vermessungswesen der Hochschule Neubrandenburg

zur Erlangung des akademischen Grades eines Diplom-Ingenieurs (FH)

Betreuer:	Prof. DrIng. Wilhelm Heger Prof. DrIng. Hans-Jürgen Larisch Dr. rer. nat. Torsten Bräuer
vorgelegt von:	Sven Müller geb. am 21.07.1979 in Neubrandenburg
URN:	urn:nbn:de:gbv:519-thesis2008-0065-2
	Neubrandenburg, Juni 2008

Hiermit erkläre ich, dass die hier vorliegende Diplomarbeit von mir selbstständig und ohne fremde Hilfe verfasst wurde und ich ausschließlich die im Literaturverzeichnis angegebenen Quellen und Materialien verwendet habe.

Neubrandenburg,

Ort, Datum

Unterschrift

Vorwort

Die vorliegende Arbeit ist in Zusammenarbeit mit dem Max-Planck-Institut für Plasmaphysik in Greifswald entstanden. Ich möchte mich auf diesem Wege bei allen bedanken, die mich bei der Vorbereitung und Erstellung dieser Arbeit unterstützt haben.

Ich danke Prof. Dr.-Ing. Wilhelm Heger, Prof. Dr.-Ing. Hans-Jürgen Larisch und Dr. Torsten Bräuer für die fachliche Unterstützung sowie Dipl.-Ing. (FH) Martin Kiskemper und Sebastian Geschwind, die mir bei der Kalibrierung der Nivellierausrüstung und dem Anpassen des Adapters an die Nivellierlatte tatkräftig geholfen haben.

Weiterhin möchte ich Dipl.-Ing. (FH) Jörg Müller, Sven Radau, Olaf Kobs und Rene Sarau für Ihre großartige Unterstützung bei der praktischen Durchführung der Messungen danken. Ohne Ihre aktive Mithilfe hätte ich die Messungen nur eingeschränkt oder aber gar nicht durchführen können. Mein Dank gilt auch dem restlichen IPP-Messteam, das immer ein offenes Ohr für meine Fragen hatte.

Ein besonderer Dank geht an meine Familie und meine Freundin, die mir in der Zeit, in der diese Arbeit entstanden ist, viel Verständnis entgegengebracht und mich moralisch sehr unterstützt haben.

Kurzfassung

Diese Diplomarbeit befasst sich mit der Präzisionsvermessung des Referenznetzes in der Torushalle am Fusionsexperiment Wendelstein 7-X.

Nach einer kurzen Vorstellung des Max-Planck-Instituts für Plasmaphysik und des Fusionsexperimentes Wendelstein 7-X wird zunächst näher auf die Hintergründe des Referenznetzes in der Torushalle eingegangen. Anschließend werden die eingesetzten Messinstrumente und deren Prüfverfahren eingehend beschrieben. Nach Ausführungen zu der eingesetzten Mess- und Auswertesoftware folgen Erläuterungen zu den Vorbereitungen und der Durchführung der Messungen. Dabei werden die aufgetretenen Probleme und deren Lösung aufgezeigt. Nach der Netzausgleichung wird ein Vergleich der Ergebnisse mit dem vorhandenen Zustand des Referenznetzes durchgeführt und die Qualität des neu vermessenen Netzes abschließend getestet.

Schlagwörter: Max-Planck-Institut für Plasmaphysik, Wendelstein 7-X, Leica Lasertracker LTD500 und LTD800, Präzisionsschlauchwaage PSW2, DiNi 12T, Referenznetz, Netzausgleichung, Xdesy

Abstract

This diploma thesis deals with the precision Measurement of the authoritative net in the assembly hall at the fusion experiment Wendelstein 7-X.

According to a short image of the Max-Planck-Institute of plasma physics and the fusion experiment Wendelstein 7-X, the backgrounds of the authoritative net in the assembly hall will be described. Afterwards the used measuring instruments and their testing methods are described thoroughly. After excecutions to the used measuring and calculation software other explanations will follow for the preparations and the realisation of the measurements. Besides, the appeared problems and their solution are indicated. After the net compensation a comparisation of the results with the available state of the authoritative net is carried out and the quality of the net measured anew is tested finaly.

Keywords: Max-Planck-Institute of plasma physics, Wendelstein 7-X, Leica Laser-Tracker LTD500 and LTD800, Precision Hydrostatic level PSW2, DiNi 12T, authoritative net, net compensation, Xdesy

Inhaltsverzeichnis

Erkläi	rung	2
Vorwo	ort	3
Kurzf	assung	4
Abstr	act	4
Inhalt	sverzeichnis	5
1	Überblick	7
1.1	Max-Planck-Institut für Plasmaphysik	8
1.2	Wendelstein 7-X	10
1.3	Die Torushalle	12
1.4	Das Hallennetz	12
1.4.1	Bestimmung des Hallennetzes	13
1.4.2	Datumsfestlegung	16
2	Messinstrumente	17
2.1	Leica Lasertracker	17
2.2	Leica Nivel20	22
2.3	Präzisionsschlauchwaage PSW2	23
2.4	Digitalnivelliere	26
2.4.1	DiNi 12T	26
3	Untersuchung der Messinstrumente	28
3.1	Überprüfung des Lasertrackers	28
3.2	Überprüfung des DiNi 12T	
3.2.1	Laborüberprüfung des DiNi 12T	
3.2.2	Feldprüfverfahren	33
3.3	Überprüfung der Nivellierlatten	34
4	Eingesetzte Software	37
4.1	AXYZ	37
4.2	Xdesy	
4.2.1	Arbeitsweise von Xdesy	
4.2.2	Xdesy Steuerdateien	39
4.2.3	Ausführen von Xdesy	41
4.3	Xdesy-Tools	42

5	Vorbereitung und Durchführung der Messungen	47
5.1	Vorbereitung der Messungen	47
5.2	Durchführung der Messungen	49
6	Auswertung der Messungen	54
6.1	Ausgleichung des Hallennetzes	56
6.2	Überführung der Koordinaten in das Netzdatum	57
6.3	Berechnung der Punkte O301 und S601	58
7	Bewertung der Ergebnisse	60
8	Zusammenfassung und Ausblick	63
Abk	ürzungsverzeichnis	64
Glos	ssar	65
Abb	ildungsverzeichnis	66
Tabe	ellenverzeichnis	67
Liter	raturverzeichnis	68
Stic	hwortverzeichnis	70
Anh	ang A: Feldüberprüfung der Lasertracker	71
Anh	ang B: Überprüfung des DiNi12T	76
Anh	ang C: Kalibrierung der Nivellierlatten	82
Anh	ang D: Messungsplanung der Lasertracker-Messung	88
Anh	ang E: Auswertung der Schlauchwaagenmessung	89
Anh	ang F: Ergebnisse des geometrischen Nivellements	95
Anh	ang G: Endgültige Koordinaten des neu berechneten Hallennetzes	97
Anh	ang H: Vergleich der Koordinaten	100

1 Überblick

Die klassische Definition der Geodäsie als *"Wissenschaft von der Ausmessung und Abbildung der Erdoberfläche"* [12] geht auf F. R. Helmert zurück. Dieser unterteilt die Geodäsie in *"höhere Geodäsie"* und *"niedere Geodäsie"*. Zur *"höheren Geodäsie"* zählen die Erdmessung und die Landesvermessung. Die Erdmessung befasst sich mit der Bestimmung der Erdfigur, einschließlich des äußeren Schwerefeldes der Erde. Die Landesvermessung dagegen hat die Aufgabe, Informationen über die Oberfläche eines Landes zu gewinnen. Dies geschieht mit Hilfe der topographischen Landesaufnahme. Die Darstellung der Landesfläche erfolgt auf Basis der Grundlagenvermessung in den topographischen Landeskartenwerken. In der *"niederen Geodäsie"* werden durch Einzelvermessungen Detailformen der Erdoberfläche ermittelt.

Abbildung 1: Einteilung der Geodäsie

Die drei Teildisziplinen Erdmessung, Landesvermessung und die Einzelvermessungen bauen aufeinander auf und ergänzen sich gegenseitig. So übernimmt die Landesvermessung z.B. bestimmte Parameter der Erdmessung. Die Ergebnisse der Landesvermessung fließen wiederum in die Arbeit der Erdmessung zurück und bilden die Grundlage für die Durchführung von Einzelvermessungen.

Für die Beschreibung der Erdoberfläche sowie für Berechnungen werden fest definierte Bezugssysteme benötigt. Diese Bezugssysteme werden von der Landesvermessung bereitgestellt und sind unterteilt in Bezugssysteme für die Lage, die Höhe und die Schwere. Geodätische Beobachtungen beziehen sich in der Regel auf das äußere Schwerefeld der Erde, da die Messinstrumente mittels Libellen an der lokalen Lotlinie ausgerichtet werden. Schwere- und Höhenmessungen beziehen sich auf das Geoid. Das Geoid ist eine Niveaufläche mit konstantem Schwerepotential, auf der die Richtung der Schwere stets senkrecht steht. Wegen der unregelmäßigen Verteilung der Erdmassen lässt sich die Form des Geoids nur schwer erfassen. Deswegen ist das Geoid als Rechenfläche für die Lage ungeeignet. Als Bezugs- und Rechenfläche wird daher ein Rotationsellipsoid verwendet, das sich im Bereich des zu beschreibenden Erdteils optimal an das Geoid anpasst.

In der Ingenieurvermessung als Teilbereich der "niederen Geodäsie" sind getrennte Systeme für Lage und Höhe in der Regel unzweckmäßig. Daher werden bei örtlich begrenzten Objekten sowie bei Aufgaben mit höheren Genauigkeitsanforderungen sehr oft lokale dreidimensionale Netze geschaffen. Diese lokalen 3D-Netze haben eine Horizontalebene als Bezugsfläche und die drei Koordinatenachsen stehen senkrecht aufeinander. Berechnet werden die lokalen Netze mit einer freien Netzausgleichung. Dadurch sind sie unabhängig von Netzspannungen übergeordneter Netze und es ergeben sich sehr hohe Genauigkeiten für die Netzpunkte.

Diese Diplomarbeit befasst sich mit der Neuvermessung eines solchen lokalen dreidimensionalen Netzes. In Zusammenarbeit mit dem Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald wird das Basisnetz in der Torushalle am Fusionsexperiment Wendelstein 7-X neu bestimmt. Neben der Vermessung des Netzes mit den im IPP vorhandenen Lasertrackern wird die horizontale Ausrichtung des Netzes durch ein Feinnivellement gestützt. Ferner wird zur Übertragung von Höhen mittels Schlauchwaage ein Höhenreferenznetz angelegt und vermessen. In einer gemeinsamen Netzausgleichung werden die Messungen nach geodätischen Gesichtpunkten frei ausgeglichen und die Koordinaten der Netzpunkte neu berechnet.

1.1 Max-Planck-Institut für Plasmaphysik

Das Max-Planck-Institut für Plasmaphysik (IPP) ist eines der größten Zentren für die Fusionsforschung in Europa. An den beiden Standorten in Garching bei München und Greifswald in Mecklenburg-Vorpommern erforscht das IPP die Grundlagen für ein Fusionskraftwerk. Bei der Kernfusion soll, wie auf der Sonne, Energie aus der Verschmelzung leichter Atomkerne gewonnen werden. Als Brennstoff für die Fusion eignen sich am besten die beiden Wasserstoffisotope Deuterium und Tritium. Bei ihrer Verschmelzung entsteht ein Helium-Kern, es wird ein Neutron frei sowie große Mengen nutzbarer Energie: Ein Gramm Brennstoff könnte in einem Kraftwerk 90 000 Kilowattstunden Energie erzeugen, das entspricht etwa der Verbrennungswärme von 11 Tonnen Kohle. Die Fusionsbrennstoffe sind nahezu unerschöpflich und zudem gleichmäßig über die Erde verteilt. Mit Fusionskraftwerken könnte in Zukunft ein wesentlicher Beitrag zur Energieversorgung geleistet werden. Damit es zur Kernfusion kommt, müssen zunächst bestimmte Zündbedingungen eintreten. Eine Voraussetzung ist das Erreichen einer Temperatur von ca. 100 Millionen °C. Bei dieser Temperatur entsteht aus dem Wasserstoffgas ein Plasma. Die Atome des Gases trennen sich dabei in ihre Bestandteile, den negativ geladenen Elektronen und den positiv geladenen Atomkernen auf. Plasmen sind dadurch elektrisch leitfähig und lassen sich in einem Magnetfeldkäfig einschließen. Dies ist das grundlegende Prinzip für ein Fusionskraftwerk. Beide bisher entwickelten Anlagentypen, Tokamak und Stellarator, besitzen ein ringförmiges Magnetfeld, welches das heiße Plasma einschließt und von den Gefäßwänden fernhält.

In Garching betreibt das IPP das Experiment ASDEX Upgrade, eine Großanlage vom Typ Tokamak. Der ASDEX Upgrade ist die größte deutsche Fusionsanlage und ging 1991 in Betrieb. Die Anlage untersucht Kernfragen der Fusionsforschung unter kraftwerksähnlichen Bedingungen und erarbeitet wesentliche Kenntnisse für den zukünftigen Testreaktor ITER. In Greifswald entsteht zurzeit der Stellarator WENDELSTEIN 7-X, der Nachfolger des Experimentes WENDELSTEIN 7-AS, das von 1988 bis 2002 in Garching in Betrieb war. Der WENDELSTEIN 7-X wird ein optimiertes Magnetfeld testen und soll die Kraftwerkstauglichkeit der Stellaratoren demonstrieren.

Die Forschungsarbeit im IPP geschieht in insgesamt zehn wissenschaftlichen Bereichen. Die einzelnen Forschungsgebiete umfassen:

- die Untersuchung des Einschlusses von Wasserstoff-Plasmen hoher Temperatur in Magnetfeldern
- die Entwickelung von Anlagen zur Plasmaheizung
- die Entwicklung von Messverfahren zur Analyse der Plasmaeigenschaften
- Magnetfeldtechnik
- Datenerfassung und verarbeitung
- Plasmatheorie
- Materialforschung und Plasma-Wand-Wechselwirkung
- sowie Systemstudien zur Fusion

Das IPP arbeitet zudem an internationalen Projekten mit. In England wird der Tokamak JET betrieben. IPP Physiker und Ingenieure sind an der Definition und der Realisierung des Ausbaus der JET-Maschine beteiligt und führen Experimente bei JET durch. In naher Zukunft entsteht im französischen Cadarache das internationale Projekt ITER. Der ITER Testreaktor vom Typ Tokamak soll zeigen, dass es physikalisch und technisch möglich ist, durch Kernverschmelzung Energie zu gewinnen. Von 1988 bis zum Umzug der Wissenschaftler an den ITER-Standort war das IPP in Garching Gastgeber der Europäischen ITER-Gruppe.

Literatur [8]

1.2 Wendelstein 7-X

Die Fusionsanlage WENDELSTEIN 7-X, die gegenwärtig am Teilinstitut Greifswald entsteht, wird einmal das weltweit größte Fusionsexperiment vom Typ Stellarator sein. Ziel dieses Experimentes ist es, ein optimiertes Magnetfeld zu testen und die Kraftwerkstauglichkeit von Stellaratoren zu demonstrieren. Im Gegensatz zum Tokamak, der auf Grund seiner Bauweise nur pulsweise arbeitet, soll mit WENDELSTEIN 7-X eine wesentliche Kraftwerkseigenschaft getestet werden, der Dauerbetrieb. An diesem Experiment sind zahlreiche Firmen und Institutionen aus ganz Europa beteiligt. So wird z.B. das System der Mikrowellenheizung vom Forschungszentrum Karlsruhe entwickelt und das Forschungszentrum Jülich konstruiert und fertigt das supraleitende Bussystem der Spulenverbindungen. Finanziert wird das Experiment von der Europäischen Union gemeinsam mit dem Bund und dem Land Mecklenburg-Vorpommern.

Abbildung 2: Stellarator WENDELSTEIN 7-X [8]

Das Kernstück des WENDELSTEIN 7-X bildet das Spulensystem. Es besteht aus insgesamt 50 nicht-planaren und 20 planaren supraleitenden Magnetspulen. Diese Spulen bilden ein Magnetfeld, in dem das bis zu 100 Mio. °C heiße Plasma eingeschlossen wird. Weitere Kernkomponenten sind u.a. das Plasmagefäß mit dem Divertor, die Systeme zum Aufheizen des Plasmas, der Kryostat sowie die Maschinensteuerung und die Messgeräte.

Technische Daten:

Größe des Experimentes	16 m Durchmesser, 5 m Höhe
Masse	> 750 t
Großer Plasmaradius	5,5 m
Kleiner Plasmaradius	0,53 m
Magnetfeld	3 Tesla
Entladungsdauer	bis 30 Minuten Dauerbetrieb
Plasma	Wasserstoff, Deuterium
Plasmaheizung	14 Megawatt (erste Ausbaustufe)
Plasmavolumen	30 Kubikmeter
Plasmamenge	5 – 30 Milligramm
Plasmatemperatur	60 – 100 Mio. °C
Plasmadichte	bis 3 · 10 ²⁰ Teilchen/m ³
Literatur [8]	

Der kreisförmige Torus besteht aus insgesamt 5 Modulen und ist rotationssymmetrisch aufgebaut. Die Module bestehen, auf Grund der Größe, aus jeweils zwei identischen, klappsymmetrischen Halbmodulen. Die Montagearbeiten an den ersten beiden Halbmodulen haben im April 2005 auf den Montageständen I/A und I/B begonnen. Im Februar 2008 konnten die beiden ersten Halbmodule auf den Montagestand II gebracht werden, um sie zu einem Modul zusammenzufügen. Die nächsten Montageschritte werden dann in der Torushalle durchgeführt. Auf den Montageständen IIIa und IVa erfolgen die Installation des supraleitenden Bussystems, der Helium-Kühlrohre sowie die Montage der Unterseite des Außengefäßes. Auf der letzten Montagestation, dem Maschinenfundament, werden die einzelnen Module zusammengesetzt und der Aufbau des Experimentes mit dem Einbau der Versorgungs- und Diagnostikstutzen sowie der Oberschale des Außengefäßes komplettiert.

1.3 Die Torushalle

Der Stellarator Wendelstein 7-X wird in einer Experimentierhalle, der sog. Torushalle errichtet. Die Torushalle hat eine Grundfläche von 32,6m x 30,6m und eine Höhe von 24m. Die Wandstärke der Halle beträgt 1,8m und die Decken und Fußböden sind 1,2m dick. Bezüglich des Strahlenschutzes ist die Halle damit so ausgelegt, dass beim Experimentierbetrieb, auch außerhalb der Torushalle die Werte für die zulässige Strahlungsbelastung für Dauerarbeitsplätze nicht überschritten werden. Die Torushalle ist durch je ein Schiebetor in der nördlichen und südlichen Wand zugänglich. Durch diese Schiebetore können die einzelnen Komponenten in die Torushalle gebracht werden. Für den Transport der einzelnen Bauteile steht ein Hallenkran zur Verfügung. Zur Beund Entlüftung der Halle gibt es ein Belüftungssystem, das so ausgelegt ist, dass in einer Stunde ein kompletter Luftaustausch vorgenommen wird.

Im Untergeschoss der Torushalle befinden sich die Versorgungssysteme des W 7-X. Diese bestehen aus der Energieversorgung, der Kühlung und der Plasmaheizung. Durch Öffnungen im Boden der Torushalle wird die Verbindung der Versorgungssysteme mit dem Stellarator hergestellt.

Während des späteren Plasmabetriebs des Stellarators ist die Torushalle aus Sicherheitsgründen unzugänglich verriegelt und frei von Personen.

1.4 Das Hallennetz

Das Referenzsystem in der Torushalle ist ein dreidimensionales, rechtwinkliges und rechtshändiges Koordinatensystem. Es ist durch die Vermarkung von insgesamt 102 Punkten realisiert. Die Vermarkung ist konzipiert für die Verwendung von Lasertrackern und Industrietachymetern als Messsystem. Sie besteht aus einer Stahlplatte, auf die ein magnetischer Reflektorhalter mit einem 2-Komponenten-Kleber aufgeklebt ist. Die Stahlplatte ist mit 3 Schrauben an der Hallenwand befestigt und zusätzlich verklebt. Der Reflektorhalter dient zur Aufnahme von 1,5" Corner-Cube-Reflektoren (CCR). Damit die Reflektoren gegen Staub und eventuell herabfallende Gegenstände geschützt sind, ist über der Platte ein "Dach" angebracht.

Abbildung 3: Vermarkung in der Torushalle

1.4.1 Bestimmung des Hallennetzes

Die erste Stufe des Hallennetzes wurde im Jahr 2003 angelegt und vermessen. Die Urmessung erfolgte mit dem Leica Lasertracker LTD500 und der Software AXYZ. Um einen Bezug zur lokalen Lotlinie zu erhalten, wurde der erste Standpunkt mit dem Nivel20 horizontiert. Ausgehend von diesem Standpunkt erfolgte die Aufnahme der Netzpunkte und der Orientierungspunkte. Alle weiteren Lasertracker Standpunkte wurden durch Anmessen dieser Orientierungspunkte zueinander orientiert. Eine erneute Ausrichtung des Lasertrackers zur Lotlinie erfolgte nicht. Dies war allerdings auch nicht notwendig, da das Orientierungsmodul der AXYZ-Software die Schiefstellung der Stehachse des Lasertrackers mitbestimmt und diese bei der Berechnung der Koordinaten mit berücksichtigt wird. Die Urmessung des Hallennetzes erfolgte mit einer inneren Genauigkeit der Koordinaten von ± 0.3 mm.

Im Jahr 2006 wurde das Hallennetz weiter verdichtet und erneut vermessen. Die Vermessung erfolgte mit dem Leica Lasertracker LTD800 und der Software AXYZ. Der Messungsaufbau entsprach in etwa dem der Urmessung. Bei der Auswertung stellte sich dann heraus, dass es insbesondere bei den Höhen der Punkte teilweise zu erheblichen Widersprüchen gegenüber der Urmessung kam. Die Auswertung der Messung wurde dann nicht weiter verfolgt und die Koordinaten der Urmessung zunächst beibehalten.

Die folgenden Abbildungen zeigen die Anordnung der Punkte auf den einzelnen Wänden der Torushalle.

Abbildung 4: Punktverteilung an der Nordwand (blau = Punkte des Urnetzes)

Abbildung 5: Punktverteilung an der Ostwand (blau = Punkte des Urnetzes)

Abbildung 6: Punktverteilung an der Südwand (blau = Punkte des Urnetzes)

Abbildung 7: Punktverteilung an der Westwand (blau = Punkte des Urnetzes)

1.4.2 Datumsfestlegung

Die Datumsfestlegung des Hallennetzes fand bereits vor der Vermarkung der Referenzpunkte statt. Im Untergeschoss der Torushalle wurde bereits 2002 mit dem Aufbau der ECRH-Mikrowellenheizung begonnen. Dazu wurde ein hochpräzises Montagenetz mit einer Genauigkeit von < 0,5mm angelegt. Dieses Montagenetz erstreckt sich über das gesamte Untergeschoss bis hinein in die Torushalle. Die Vermarkung besteht aus Messingbolzen mit eingeschraubten 12mm Leica Steckzapfen. Im Zuge der Vermessung des Montagenetzes wurden der Nullpunkt (NP) des Stellarators in der X-Y-Ebene und die optische Achse der Mikrowellenheizung im sog. Strahlendukt festgelegt und vermarkt.

Diese Festlegungen sind die Grundlage für das Koordinatensystem der Torushalle. Bei der Urmessung des Hallennetzes im Jahr 2003 wurden der Stellaratornullpunkt und die Achspunkte im Strahlendukt mit aufgemessen. Das Koordinatensystem, in dem die Bestimmung aller Referenzpunkte erfolgte, wurde in den Stellaratornullpunkt geschoben und die positive X-Achse gegenüber der optischen Achse der ECRH-Mikrowellenheizung um 36° gegen den Uhrzeigersinn gedreht. Die Höhe des Koordinatennullpunktes wurde mit -9,60m festgelegt und das Koordinatensystem entlang der Z-Achse auf diesen Wert verschoben.

Quelle: IPP-Messteam

Abbildung 8: Datum des Koordinatensystems der Torushalle

2 Messinstrumente

Im diesem Kapitel werden die bei den Messungen in der Torushalle benutzten Messinstrumente vorgestellt und deren Messprinzipien erläutert.

2.1 Leica Lasertracker

Dem IPP stehen zurzeit zwei Leica Lasertracker der Modellreihen LTD500 und LTD800 zur Verfügung, mit denen der Großteil der täglich anfallenden Vermessungsarbeiten bewerkstelligt wird. Der LTD500 wird hauptsächlich bei der Montage der einzelnen Halbmodule auf den Montageständen I/A und I/B eingesetzt. Der LTD800 dagegen ist zusätzlich mit einer T-Cam und einer T-Probe ausgerüstet und kommt vornehmlich in der Bauteilvorbereitung zum Einsatz.

Lasertracker sind mobile hochpräzise optische 3D-Koordinaten-Messsyteme, die speziell für Anwendungen in der Industrie entwickelt wurden. Wie elektronische Tachymeter arbeiten sie nach dem Polarverfahren, d.h. aus einer Horizontalrichtung, einem Vertikalwinkel und einer Raumstrecke erfolgt die Berechnung der dreidimensionalen kartesischen Koordinaten. Die zur Koordinatenbestimmung notwendigen Winkel werden von zwei hochpräzisen Winkelencodern abgeleitet, während die Bestimmung der Raumstrecke durch ein Interferometer geschieht. Die dreidimensionale Koordinatenerfassung kann dabei sowohl auf statische Ziele als auch auf bewegte Zielpunkte innerhalb eines Messvolumens mit einem Radius von bis zu 35m erfolgen.

Das Messsystem Lasertracker besteht grundsätzlich aus drei Komponenten: dem Messkopf mit den Sensoren zur Messwerterfassung, dem Controller, der den Regelkreis zur Reflektorverfolgung bereitstellt, die Messsignale auswertet und an die dritte Komponente, den Applikationsrechner weiterleitet. Auf dem Applikationsrechner läuft eine Mess- und Analysesoftware, mit der die gemessenen Daten gespeichert und weiterverarbeitet werden können. Durch externe Sensoren, wie z.B. Temperatursensoren und/oder Neigungsmesser kann das Meßsystem zusätzlich ergänzt werden.

Das Interferometer (2) des in Abbildung 9 dargestellten Messkopfes sendet einen Laserstrahl über den Strahlteiler (3) und einem drehbar gelagerten Spiegel zu einem Reflektor (7). Dort wird das Licht reflektiert und gelangt auf dem gleichen optischen Weg zurück zum Strahlteiler (3). Dabei wird der reflektierte mit dem ausgesendeten Strahl überlagert. Der Strahlteiler (3) spaltet den Strahl auf und sendet einen Teil des Strahls zurück zum Interferometer (2). Dort registriert die Elektronik die Anzahl der Hell-Dunkel-Übergänge und leitet daraus die Änderung der Strecke zwischen dem Reflektor (7) und dem Lasertracker ab. Der andere Teil des Strahls gelangt zum Positionsdetektor (4). Dort wird die Auslenkung des Strahls bestimmt. Die Werte der Auslenkung werden vom Controller mit den Werten der Winkelencoder (5) in Verbindung gebracht und mit der Distanzinformation des Interferometers in Steuersignale für die beiden Motoren (6) umgerechnet. Somit werden die Nachführung und die kontinuierliche Ausrichtung des Messstrahls auf den Reflektor gewährleistet. Dieser Regelkreis läuft ca. 3000-mal je Sekunde ab.

Literatur [10] Seite: 169 ff

Abbildung 9: Messkopf Leica Lasertracker [6]a

Ausgangspunkt einer jeden Messung ist das sog. Vogelbad (8) (Home Point), in das der Reflektor zu Beginn einer Messung oder nach einer Strahlunterbrechung hineingelegt wird. Die Bestimmung des Abstandes zwischen dem Mittelpunkt des Reflektors und dem Interferometer erfolgt in einer Kalibriermessung. Dieser bildet einen absoluten Startwert für die interferometrische Streckenmessung. Mit dem Interferometer selbst können nur Streckenänderungen ermittelt werden. Die absolute Distanz zu einem Reflektor erhält man durch kontinuierliche Addition der Streckenänderungen zum Startwert.

Die Lasertracker der Baureihe LTD sind zusätzlich mit einem absolut messenden Distanzmesser (ADM) ausgerüstet. Mit dem ADM (1) ist es möglich, die Startdistanz des Interferometers an jeder beliebigen Stelle neu zu setzen. Nach der Bestimmung der Startdistanz wird auf das Interferometer umgeschaltet, das dann wieder die Streckenänderungen ermittelt. Die ADM-Technologie basiert auf dem Prinzip von Fizeau [7], soll aber an dieser Stelle nicht näher erläutert werden.¹

Der Lasertracker LT(D)500 ist der Nachfolger des ersten Lasertracker-Systems Smart 310, das Leica 1990 auf den Markt brachte. Mit der zugehörigen Software AXYZ können mit dem LTD500 geometrische Vermessungen schnell und mit höchster Präzision durchgeführt werden. Die Software AXYZ bietet dem Nutzer eine umfangreiche Sammlung an Funktionen für die Lösung der unterschiedlichsten Aufgabenstellungen aus dem Bereich der Industrievermessung.

Der LTD800 ist ein Lasertracker der neueren Generation. Im Zusammenhang mit der Software AXYZ hat er einen identischen Funktionsumfang wie der LTD500. Im Zuge der technischen Entwicklung konnte die Genauigkeit des ADM gegenüber dem des LTD500 nochmals gesteigert und der Messbereich vergrößert werden.

Die Tabelle 1 zeigt die Spezifikationen des LTD500 und des LTD800 im Vergleich.

¹ siehe dazu Literatur [1] Seite: 136 f

max. Zielverfolgungsgeschwindigkeit	LIDSOU	LIDOOD			
rechtwinklig zum Laserstrahl	> 4,0	> 4,0 m/s			
in Richtung des Laserstrahls	> 6,0) m/s			
max. Beschleunigung					
in allen Richtungen	> 2	2 g			
Messbereich	•				
horizontal	± 2	35°			
vertikal	± 4	15°			
Distanz	0 - 35 m	0 - 40 m			
Genauigkeit	•				
Winkelauflösung	0,14"				
Wiederholgenauigkeit einer Koordinate	nauigkeit einer Koordinate ± 5 µm/m				
Absolutgenauigkeit einer Koordinate					
- statische Ziele	± 10 μm/m				
- sich bewegende Ziele	± 20-40 μm/m				
Laser Interferometer	1				
Funktionsprinzip Einzels		nterferometer			
Distanzauflösung	1,26 µm				
Wellenlänge	633 nm ((sichtbar)			
ADM					
Arbeitsprinzip Lichtpolarisationsmodulati					
Auflösung	1 µm				
Genauigkeit	± 50 μm ± 25 μm				
Messbereich	2 - 35 m	1,5 - 40 m			
Wellenlänge	780 nm (infrarot)				

Tabelle 1: Spezifikationen LTD500 und LTD800 (Herstellerangaben)

(alle Genauigkeitsangaben sind als 2₅-Werte angegeben)

Lasertracker arbeiten grundsätzlich mit Reflektoren. Diese müssen für die Interferometrie geeignet sein und den hohen Genauigkeitsanforderungen entsprechen. Durchgesetzt haben sich insbesondere Tripel-Spiegel-Reflektoren (engl.: Corner-Cube-Reflector (CCR)). Diese bestehen aus drei Spiegeln, die rechtwinklig zueinander stehen und in Metallkugeln untergebracht sind. Die Spiegel sind so angeordnet, dass das Reflektorzentrum mit dem Mittelpunkt der Kugel zusammenfällt. Jede Messung bezieht sich daher immer auf den Kugelmittelpunkt. Dadurch ergeben sich für den CCR ideale Zentrier- und Anzielbedingungen.

Erhältlich sind die CCR in den Größen 0,5" und 1,5" (Zoll).

Abbildung 10: Corner-Cube-Reflektor mit Magnethalter

In der Industriemesstechnik sind Referenzpunkte oft als Bohrungen ausgeführt. Für die Verbindung zwischen der Bohrung und dem Reflektor hat die Firma Hubbs spezielle Adapter entwickelt. Erhältlich sind außerdem Adapter zum Messen von Ecken und Kanten sowie diverse Magnethalter (Abbildung 10), mit denen ein Messpunkt eindeutig definiert werden kann.

Als optionales Zubehör bietet Leica die Hochgeschwindigkeitskamera T-Cam und den Handtaster T-Probe an. Damit wird aus dem Lasertracker ein universelles mobiles handgeführtes Koordinaten-Messgerät. Die T-Cam wird direkt auf dem Messkopf montiert und verfolgt die Bewegungen der T-Probe im Raum. Auf der T-Probe sind insgesamt 10 Dioden (2) angebracht, deren Abstände untereinander bekannt sind. Mit Hilfe dieser Dioden können die Verdrehwinkel (i, j und k) der T-Probe in Bezug auf die T-Cam bestimmt werden. Der Lasertracker übernimmt die Bestimmung der Richtungen und der Strecke zu einem eingebauten Reflektor (1). An der Unterseite befindet sich ein auswechselbarer Taster (3), mit dem die Objektpunkte angetastet werden können. Aus der Kombination der Messung der Drehwinkel, der Richtungen und der Strecke zum Reflektor sowie der kalibrierten Tasterlänge können die 3D-Koordinaten beliebiger Punkte erfasst werden.

Messbereich	
Messvolumen	1,5 - 15 m
Nickwinkel	± 45°
Gierwinkel	± 45°
Rollwinkel	± 360°
Messleistung	
Punktratenausgabe	bis zu 1000 Hz
Trackinggeschwindigkeit	> 1 m/s
Taster	
Renishaw kompatibel	
mit Tasterselbstidentifizierung	
Länge	100 mm - beliebig
Genauigkeit	
Längenmessgenauigkeit (2σ)	60 µm

Tabelle 2: Spezifikationen T-Probe (Herstellerangaben)

Abbildung 11: T-Cam und T-Probe [6]

2.2 Leica Nivel20

Im Gegensatz zum Tachymeter braucht der Lasertracker zum Messen nicht horizontiert werden. Dennoch gibt es spezielle Anwendungen, bei denen ein Bezug zur lokalen Lotlinie benötigt wird. Für diesen Fall kann der Neigungssensor Nivel20 auf dem Trackerkopf montiert und der Lasertracker lotrecht aufgestellt werden.

Das Nivel20 hat einen Messbereich von $\pm 1,5$ mrad (5,2') und eine Genauigkeit von $\pm 0,005 + 0,5\%$ mrad (1" + 0,5% des gemessenen Wertes) über den gesamten Messbereich.

Abbildung 12: Nivel20

Das Nivel20 gehört zur Gruppe der elektronischen Neigungsmesser. Im Inneren des Nivel20 befindet sich ein Glaszylinder (3), der zum Teil mit Silikonöl gefüllt ist. Die Oberfläche des Silikonöls dient hierbei als Referenz für die Neigungsmessung. Diese Oberfläche wird von unten von einer Diode (2) über eine Optik beleuchtet. Der Strahl (1) wird an der Oberfläche reflektiert und punktförmig auf eine *Lateraleffektdiode* (4) abgebildet. Über die rechtwinkligen Ablagen des Lichtstrahls vom Nullpunkt kann die bidirektionale Neigung des Nivel20 berechnet werden.

Literatur [10] Seite: 89

Abbildung 13: Messprinzip des Nivel20 [6]c a) horizontiert b) geneigt

2.3 Präzisionsschlauchwaage PSW2

Im Maschinenbau und bei der Überwachung von Großanlagen werden zur hochpräzisen Bestimmung kleinster Höhenunterschiede sehr oft hydrostatische Messsysteme eingesetzt. Neben der hohen Messgenauigkeit ist ein weiterer Vorteil dieser Systeme, dass zwischen den einzelnen Messpunkten keine direkte Sichtverbindung bestehen muss. Diese Eigenschaften sollen beim Aufbau des Experimentes W 7-X ausgenutzt werden. Vorgesehen ist der Einsatz einer Präzisionsschlauchwaage, um Höhen von außen in das Innere des Plasmagefäßes zu übertragen.

Schlauchwaagen arbeiten nach dem Prinzip der kommunizierenden Röhren. Dieses Prinzip besagt, dass sich in verbundenen und oben offenen Gefäßen die Oberfläche einer homogenen Flüssigkeit auf eine Niveaufläche einstellt, deren Schwerepotential konstant ist. Die Flüssigkeitsoberflächen bilden dann eine Horizontalebene, wenn die metrologischen Bedingungen an beiden Gefäßstandorten gleich sind.

Die Präzisionsschlauchwaage PSW2 der Firma Freiberger Präzisionsmechanik (FPM) ist eine mechanische Schlauchwaage. Sie besteht in der Grundausstattung aus zwei Messwertaufnehmern, die durch einen Schlauch miteinander verbunden werden. Die Messwertaufnehmer werden an speziellen Höhenbolzen mit kugeligem Kopf aufgehängt und mit einem Bügel (6) horizontiert. Die Bestimmung des Messwertes, also des Abstandes zwischen der Flüssigkeitsoberfläche und dem Höhenbolzen, erfolgt mit einer Tastspitze (1). Diese wird mit einer Rändelschraube (2) soweit nach unten bewegt, bis sie die Wasseroberfläche berührt. Die Rändelschraube dreht eine Präzisionsspindel, an der ein Index für die Grobablesung an der Längsskale (3) befestigt ist. Die Feinablesung erfolgt an einer Teilungstrommel (4), die ebenfalls durch die Präzisionsspindel gedreht wird. Der Augenblick, in dem die Tastspitze die Wasseroberfläche berührt, wird durch einen Indikator (5) angezeigt. Beim Aufsetzen der Tastspitze wird ein elektrischer Stromkreis geschlossen und die Indikatorlampe leuchtet auf.

Abbildung 14: Messwertaufnehmer PSW2

Die eigentliche Messung beginnt mit dem gleichzeitigen Schließen der Absperrhähne (7). Danach wird die Tastspitze mehrmals auf die Wasseroberfläche aufgesetzt und die entsprechenden Messwerte in speziellen Formularen notiert. Die Millimeter werden an der Längsskale und die hundertstel Millimeter an der Teilungstrommel abgelesen.

Nach erfolgter Messung werden die Messwertaufnehmer ausgetauscht. Dadurch wird in der Mittelbildung des Höhenunterschiedes der Nullpunktfehler der Messsysteme eliminiert. Zum Ausschalten des Luftdruckeinflusses wird an der Nachfüllöffnung (8) ein Luftschlauch angebracht. Somit wird in einem abgeschlossenen System gemessen und Druckdifferenzen an den einzelnen Messstellen haben keinen Einfluss auf die Messung. Der größte Einfluss auf die Messgenauigkeit geht allerdings von Temperaturunterschieden zwischen den Messstellen aus. Zur Erfassung der Wassertemperatur wird daher jedem Messwertaufnehmer ein Schlauchthermometer vorangestellt. Treten Temperaturdifferenzen zwischen den Messstellen auf, muss der ermittelte Höhenunterschied entsprechend korrigiert werden. Weitere genauigkeitsbeeinflussende Faktoren, wie z.B. der Einfluss der Kapillarität oder Horizontierungsfehler sind durch die Konstruktionsweise der PSW2 so klein gehalten, dass sie praktisch keinen Einfluss auf die Messgenauigkeit haben.

Die folgende Tabelle zeigt die wesentlichen technischen Daten der PSW2.

Technische Daten	
Ausnutzbare Messlänge	100 mm
Skalenwert der Längsskale	1 mm
Skalenwert der Teilungstrommel	0,01 mm
Glaszylinder, Innendurchmesser	42 mm
Dosenlibelle, Angabe	25'
Genauigkeit	
∆h bei 30 - 40m Schlauchlänge	± 0,01 mm
Abmessungen	
Höhe des Messsystems	500 mm
Durchmesser	72 mm
Masse der gesamten Ausrüstung	31,5 kg

Tabelle 3: Spezifikationen PSW2 (Herstellerangaben)

Abbildung 15: Höhenbolzen

Für die Präzisionsschlauchwaage werden spezielle Höhenbolzen (Abbildung 15) verwendet, deren Köpfe kugelförmig ausgebildet sind. Durch die Kugelform wird der Messwertaufnehmer stets an der höchsten Stelle des Bolzens aufgehängt, auch wenn dieser nicht horizontal in die Wand eingelassen ist. Der Messwertaufnehmer verfügt weiterhin über ein Zentriersystem, in das der Bolzenkopf einrastet. Somit ist das Messsystem gegen ein Herunterrutschen gesichert. Bei Nichtbenutzung wird der Höhenbolzen durch eine Schutzkappe vor Beschädigungen und Korrosion geschützt.

2.4 Digitalnivelliere

Nivelliere gehören zu den geodätischen Messinstrumenten, die bis vor wenigen Jahren noch nicht automatisiert waren. Erst durch Weiterentwicklungen in der Elektronik gelang der Schritt vom analogen zum digitalen Nivellier. Digitalnivelliere sind im Prinzip Kompensatornivelliere, die zusätzlich mit Komponenten der elektronischen Bilderfassung und –auswertung ausgestattet sind. Diese Komponenten ermöglichen mit entsprechenden Nivellierlatten die vollautomatische Ablesung eines Messwertes. Dadurch erfolgt eine deutliche Steigerung der Messgeschwindigkeit und Ablesefehler an der Nivellierlatte werden ausgeschlossen.

Der Aufbau eines Digitalnivelliers ist im Grunde immer gleich. Eine optisch codierte Nivellierlatte wird in der Bildebene eines Messfernrohres auf eine CCD-Zeile abgebildet. Ein Analog/Digital-Wandler formt das abgebildete Lattenbild in ein digitales Signal um. Dieses Signal wird im Anschluss von einer Prozessoreinheit ausgewertet und als Höhenablesung ausgegeben und gespeichert. Zusätzlich wird die Entfernung zur Latte bestimmt und die Messwertausgabe erfolgt auf einem Display.

Ergänzt werden Digitalnivelliere durch eine Vielzahl von Messprogrammen. So sind z.B. neben den verschiedensten Nivellierprogrammen auch Prüfprogramme zur Justierung der Ziellinie fest integriert. Die Speicherung der Messdaten erfolgt in der Regel automatisch. Diese können in weiterführende Auswerteprogramme exportiert werden. Somit ist der automatische Datenfluss von der Erzeugung eines Messwertes bis zur Berechnung des Ergebnisses gewährleistet.

Literatur [1]

2.4.1 DiNi 12T

Die Digitalnivelliere der DiNi-Reihe wurden von Zeiss 1994 zum ersten Mal vorgestellt. Erhältlich sind die DiNi in zwei Varianten, als Präzisionsinstrument DiNi 12 (bzw. DiNi 11 und DiNi 10) sowie als Ingenieurnivellier DiNi 22 (bzw. DiNi 21 und DiNi 20). Äußerlich unterscheiden sich die beiden Modelle nicht voneinander und auch die Elektronik ist identisch. Bei den Präzisionsinstrumenten wird die bessere Genauigkeit lediglich durch eine höhere Fernrohrvergrößerung und durch einen empfindlicheren Kompensator erreicht. Die DiNi der Typenreihe T sind zusätzlich mit einem elektronischen Teilkreis zur Beobachtung horizontaler Richtungen ausgestattet. Damit wird aus dem DiNi ein digitales Nivelliertachymeter. Einsatzgebiete dieser Instrumente sind neben dem geometrischen Nivellement u.a. auch die tachymetrische Geländeaufnahme sowie die Messung von Längs- und Querprofilen. Die Genauigkeit der Punktbestimmung ist dabei abhängig von der Entfernung der Latte zum Instrument und beträgt etwa 3 - 10 cm.

Technische Daten	-
Messbereich	1,5 - 100 m
Temperaturbereich	-20°C - +50°C
Fernrohrvergrößerung	32 x
Fernrohröffnung	40 mm
Genauigkeit	-
Standardabweichung für 1km Doppelnivellement	0,3 mm
Distanzmessung (20 m)	20 mm
Winkelmessung	2 mgon / 6"
Kompensator	
Neigungsbereich	± 15'
Einspielgenauigkeit	± 0,2"
Dosenlibelle, Angabe	8'
Maße und Gewichte	
Abmessungen	125 x 176 x 295 mm
Gewicht	3,7 kg

Tabelle 4: Spezifikationen DiNi 12T (Herstellerangaben)

Abbildung 16: DiNi 12T

Nach dem Auslösen einer Messung wird zunächst geprüft, ob sich der Kompensator in seinem Arbeitsbereich befindet und die Belichtungszeit bestimmt. Anschließend erfolgen vier Einzelmessungen, die im Mittelwert zur Lattenablesung führen. Die Messzeit beträgt dabei etwa 2 bis 4 Sekunden. Die Ermittlung des Messwertes erfolgt durch eine Einzelintervallmessung. Dabei werden alle Kanten eines 30 cm langen, symmetrisch zur Ziellinie liegenden Lattenabschnitts detektiert. Grundlage dafür ist ein spezieller Lattencode. Dieser ist aus einem Grundmuster mit Intervallen von 2 cm Länge aufgebaut. Diese Intervalle werden von einem sog. Bi-Phasencode überlagert, der für zusätzliche Hell-Dunkel Wechsel im Lattenbild sorgt. Im Nahbereich reichen diese Informationen allerdings nicht aus, da zu wenig Intervalle auf dem CCD-Sensor abgebildet werden. Daher ist dem 2 cm Grundcode ein zusätzlicher Code überlagert, um eine eindeutige Lattenablesung im Nahbereich zu ermöglichen.

Abbildung 17: Aufbau des Zeiss Lattencodes nach [1]

3 Untersuchung der Messinstrumente

Messgeräte sollten bei besonderen Anlässen wie Kauf oder Übernahme grundsätzlich überprüft werden. Die Überprüfung ist periodisch zu wiederholen um sicherzustellen, dass das Instrument funktionstüchtig ist und die Instrumentenfehler die zulässigen Grenzwerte nicht überschreiten. Besonders bei Messprojekten mit hohen Genauigkeitsanforderungen und nach Schock oder Vibrationen sind Prüfungen erforderlich. In diesem Kapitel werden die Prüfverfahren der eingesetzten Instrumente beschrieben und die Ergebnisse erläutert. Die Protokolle der Überprüfungen können dem Anhang entnommen werden.

3.1 Überprüfung des Lasertrackers

Die Überprüfung des Lasertrackers wird mit dem AXYZ LTM Modul durchgeführt. Ziel der Überprüfung ist es, den Zustand des Lasertrackers zu kontrollieren und Abweichungen gegenüber der werkseitigen Kalibrierung festzustellen.

Die Überprüfung geschieht in 4 Schritten:

- Zwei-Lagen Messung
- Reflektorstab-Messung
- Überprüfung der IFM-Distanz
- Überprüfung des ADM-Offset

Werden Reflektoren verwendet, die nicht von Leica stammen, können deren Konstanten in einen zusätzlichen Prüfschritt kontrolliert werden.

Bei der Zwei-Lagen Messung wird die Richtungsmessung des Lasertrackers überprüft. Die Prüfung läuft in drei Schritten ab. Zunächst erfolgt die Messung zu zwei Punkten, die sich auf einer Linie mit dem Lasertracker befinden müssen. Die Punkte sollen dabei eine Entfernung von < 0,5m und 5 – 10m zum Tracker haben. Anschließend werden drei Punkte auf einer vertikalen Linie angemessen. Dabei hat der erste Punkt eine Position vom ca. + 40°, der zweite eine Position von 0° und der dritte eine Position von ca. - 40° zum Trackerkopf. Im dritten Schritt wird ein Punkt, der sich + oder – 90° zur vertikalen Ebene befindet, angemessen. Bei der Auswertung werden die Abweichungen zu den ursprünglichen Kalibrierwerten berechnet. Diese Abweichungen dürfen die zulässigen Toleranzen nicht überschreiten.

Die Reflektorstab-Messung dient zur Überprüfung der Trackingfunktion des Lasertrackers. Dazu wird ein um eine Achse rotierender Reflektorstab benutzt. Bei der Messung wird eine volle Umdrehung des Reflektorstabes mit 100 Punkten aufgenommen. Die Messung erfolgt zunächst in einer Entfernung von < 1m und danach in einer Entfernung von > 3m. Die aufgenommenen Punkte sollten idealerweise auf einem Kreis liegen. Die Abweichungen von diesem Kreis werden bei der Berechnung ermittelt und dürfen die zulässigen Toleranzen nicht überschreiten.

Die IFM-Distanz ist ein Instrumentenparameter mit einem festen Wert. Dieser Wert wird dem Interferometer als Startwert übergeben und bildet somit die Grundlage für die absolute Streckenmessung. Die Bestimmung der IFM-Distanz erfolgt durch Messung zu zwei festen Punkten von zwei Stationen aus. Bei der Auswertung wird die Abweichung zur gespeicherten IFM-Distanz berechnet. Übersteigt die Abweichung die zulässige Toleranz, ist der Wert für die IFM-Distanz neu zu setzen.

Bei der Überprüfung des ADM-Offsets wird kontrolliert, ob sich die Datumsposition des ADM im Rotationszentrum des Lasertrackers befindet. Wegen der höheren Genauigkeit des Interferometers wird dieses als Referenz für die Überprüfung verwendet. Bei der Überprüfung werden die ADM-Distanzen mit den IFM-Distanzen zu ein und denselben Punkten miteinander verglichen. Die Abweichungen zwischen den Distanzen dürfen die zulässigen Toleranzen nicht überschreiten. Bei der Auswertung wird außerdem der ADM-Offset und der Maßstabsfaktor des ADM berechnet.

Literatur [7]

Prüfschritt		Toleranz*	LTD500	LTD800
Zwei-Lagen-Messung		± 0,0012°	-0,0007°	-0,0008°
Poflektorsteh Messung	< 1m	± 0,020 mm	0,010 mm	0,006 mm
Reliektorstab-messurig	> 3m	± 0,060 mm	0,045 mm	0,020 mm
IFM-Distanz		± 0,020 mm	-0,010 mm	-0,010 mm
ADM-Offset		± 0,050 mm	-0,017 mm	-0,009 mm

Tabelle 5: Ergebnisse der Lasertracker-Überprüfung

* Leica Empfehlung

Bei der Überprüfung der Lasertracker wurden keine Überschreitungen der zulässigen Toleranzen festgestellt. Beide Lasertracker arbeiten mit den aktuellen Kalibrierparametern. Es kann davon ausgegangen werden, dass die Lasertracker den Spezifikationen entsprechen

Das Prüfprotokoll kann dem Anhang A entnommen werden.

3.2 Überprüfung des DiNi 12T

Zur Kontrolle des verwendeten DiNi 12T werden verschiedene Prüfverfahren angewandt. Diese kann man unterteilen in Labor- und Feldüberprüfungen. Die Laborüberprüfung sollte regelmäßig und vor größeren Messungen durchgeführt werden. Dabei werden die Stehachslibelle und die Einstellung des Strichkreuzes kontrolliert und ggf. justiert. Weiterhin erfolgt eine eingehende Untersuchung des Kompensators. Die Feldüberprüfung wird grundsätzlich an jedem Messtag vor Beginn der Messung durchgeführt. Dabei werden die Stehachslibelle und insbesondere die Abweichung der Ziellinie von der Horizontalen kontrolliert.

In den beiden folgenden Abschnitten werden die durchgeführten Prüfungen erläutert und die ermittelten Ergebnisse dargestellt.

3.2.1 Laborüberprüfung des DiNi 12T

Zur Prüfung von Nivellieren wurde im Labor für Instrumentenkunde an der Hochschule Neubrandenburg ein Prüfplatz eingerichtet. An diesem erfolgte die Untersuchung des DiNi 12T. Im ersten Schritt wurde die Justierung der Stehachslibelle überprüft. Dazu musste die Libelle mit den Fußschrauben eingespielt und anschließend das Nivellier um 200gon gedreht werden. Nach der Drehung zeigte sich keine Veränderung, daher brauchte die Stehachslibelle nicht justiert zu werden. Der zweite Prüfschritt diente der Überprüfung der optischen Zielachse. Dazu wurde das DiNi vor einem horizontierten Kollimator aufgebaut. Beim Durchschauen durch das DiNi wurde festgestellt, dass das Strichkreuz des Nivelliers nicht mit dem des Kollimators zusammenfällt. Der daraus resultierende Ziellinienfehler konnte durch Justierung des Strichkreuzes beseitigt werden. Anschließend erfolgte die Bestimmung des Arbeitsbereiches des Kompensators. Die Prüfung erfolgte auf einer kippbaren Grundplatte, auf der ein Neigungssensor angebracht ist. Der Neigungssensor war mit einem Computer verbunden, der die aktuelle Neigung auf dem Bildschirm anzeigte. Zu Beginn der Messung wurde die Platte auf Mittelstellung gebracht und das Nivellier horizontiert. Danach musste die Platte so weit nach oben und nach unten gekippt werden, bis der Kompensator an die jeweilige Grenze seines Arbeitsbereiches kam. An allen drei Stellungen wurden die Werte des Neigungssensors abgelesen und daraus der Arbeitsbereich des Kompensators berechnet. Im nächsten Prüfschritt wurde der Einspielfehler des Kompensators ermittelt. Dies geschah durch Neigung der Platte und unmittelbarem Zurückstellen der Platte auf Mittelstellung. Anschließend musste das Strichkreuz des Kollimators so verstellt werden, dass es mit dem des Nivelliers zusammenfällt. Die Änderungen des Kollimatorstrichkreuzes wurden elektronisch abgegriffen und notiert. Dieser Vorgang wurde je fünf Mal für beide Einschwingrichtungen des Kompensators durchgeführt. Aus allen Stellungen des Kollimatorstrichkreuzes konnte nun die Einspielgenauigkeit des Kompensators berechnet werden.

Abbildung 18: Überprüfung des DiNi 12T

Der letzte Prüfschritt diente der Bestimmung der Kompensatorablaufkurve. Dazu wurde der Arbeitsbereich des Kompensators in 15 gleich große Intervalle eingeteilt. Die Einstellung der Intervalle erfolgte durch Kippen der Grundplatte. Bei jedem Intervallschritt musste das Strichkreuz des Kollimators auf das des Nivelliers eingestellt und die entsprechenden Einstellwerte in das Formular übernommen werden. Trägt man die einzelnen Zielachsneigungen in Abhängigkeit der Neigung der Grundplatte in ein Diagramm ein, kann man die maximale Zielachsneigung ablesen. Der Kompensationsrestfehler ergibt sich aus dem Verhältnis der Zielachsneigung zur Stehachsneigung und wird durch die Steigung einer ausgleichenden Gerade, die durch die Messungen verläuft, ausgedrückt.

In einem weiteren Versuch erfolgte die Untersuchung des Einflusses magnetischer Felder auf den Kompensator des DiNi 12T. Dazu wurde eine Helmholtzspule um das Nivellier aufgebaut. Durch Anlegen einer Spannung werden homogene magnetische Felder durch die Helmholtzspule erzeugt, die das 10-fache bzw. 25-fache des natürlichen Erdmagnetfeldes betragen. In dieser Messanordnung werden insgesamt 5 Messreihen durchgeführt, wobei die erste, dritte und fünfte Messung ohne verstärktes Magnetfeld erfolgt. Bei der zweiten Messung wird das Magnetfeld in Nord-Süd-Richtung, vom Objektiv zum Okular, ausgerichtet. Die vierte Messung findet mit umgekehrter Magnetfeldrichtung statt. Für diese Prüfung wurde das DiNi wieder vor dem Kollimator aufgebaut und beide Strichkreuze zur Deckung gebracht. Bei jeder Messreihe erfolgten fünf Einstellungen des Kollimatorstrichkreuzes. Mit Hilfe statistischer Tests wird untersucht, ob sich die Messwerte unter verstärktem Magnetfeld von denen mit normalem Magnetfeld unterscheiden. Werden bei diesen Tests keine Unterschiede festgestellt, kann ausgeschlossen werden, dass ein Einfluss magnetischer Felder auf den Kompensator vorliegt.

Abbildung 19: DiNi 12T in der Helmholtzspule

Bei der Untersuchung des Arbeitsbereiches des Kompensators wurde festgestellt, dass dieser einerseits nicht symmetrisch und andererseits größer als werkseitig angegeben ist. Die Herstellerangabe von \pm 15' für den Arbeitsbereich wird aber eingehalten. Der ermittelte Kompensatoreinspielfehler von 0,08" liegt ebenfalls weit unter der Werksangabe von 0,2". Ein Einfluss elektromagnetischer Felder auf den Kompensator konnte nicht festgestellt werden. Diese Prüfung war insofern wichtig, da innerhalb der Torushalle elektromagnetische Felder auftreten können.

Zusammenfassend kann gesagt werden, dass das geprüfte DiNi 12T für die Messung geeignet ist. In der folgenden Tabelle sind die Ergebnisse der Laborüberprüfung aufgeführt.

Prüfverfahren		Werksangabe	DiNi 12 T Nr.: 350 002
Arbeitsbereich gesamt		± 15'	35,9'
des Neigung			16,4'
Kompensators Hebung			19,4'
Kompensatoreinspielfehler		± 0,2"	0,08"
Kompensatorumkehrfehler			-0,02"
Kompensationsrestfehler			0,003"
Einfluss magnetischer Felder			nicht feststellbar

Tabelle 6: Ergebnisse der Überprüfung des DiNi 12T Nr.: 350 002

3.2.2 Feldprüfverfahren

Zur Überprüfung eines Nivelliers am Einsatzort gibt es das Verfahren mit kürzester Zielweite, sowie die Verfahren nach Näbauer, Förstner und Kukkamäki. Diese Verfahren unterscheiden sich lediglich in der Anordnung der Latten- und Instrumentenstandpunkte, haben aber alle das Ziel, die Justierung der Ziellinie zu überprüfen. In der folgenden Übersicht sind die einzelnen Aufstellungen zum Vergleich dargestellt.

Abbildung 20: Übersicht der Justierverfahren für Nivelliere

Das Grundprinzip ist bei allen Verfahren gleich. Aus den vier Lattenablesungen in den beiden Instrumentenstandpunkten wird der Zielachsfehler sowie die korrigierte Ablesung an der letzten Latte ermittelt. Auf die Herleitung der Berechnung wird an dieser Stelle verzichtet. Sie kann in der entsprechenden Literatur¹ nachgelesen werden.

Im verwendeten DiNi 12T sind die Justierverfahren für die Ziellinie bereits im Menü integriert. Am Anfang jedes Messtages habe ich die Ziellinie nach dem Verfahren von Förstner überprüft. Die Zielweite betrug 15 m, was in etwa der maximalen Zielweite bei dem Nivellement entsprach. Die Überprüfung ergab einen mittleren Fehler von 14,5". Dieser blieb über den gesamten Messzeitraum relativ stabil. (min. 14,0"; max. 15,4")

Mit Hilfe der Bogenformel:

$$\frac{b}{r} = \frac{\alpha}{\rho}$$

lässt sich der Einfluss des Ziellinienfehlers auf die Lattenablesung berechnen. Bei einer Zielweite von 15 m ergibt sich bereits ein Fehler von ca. 1 mm. Der Einfluss eines Ziellinienfehlers lässt sich durch eine Messanordnung mit streng gleich langen Zielweiten vollständig eliminieren. Daher wurden die Latten- und Instrumentenstandpunkte bereits vor der Messung mit dem Messband abgesteckt.

¹ siehe dazu z.B. Literatur [1] Seite: 283 ff

3.3 Überprüfung der Nivellierlatten

Die Anforderungen an Präzisionsnivellierlatten kann man der DIN 18717 entnehmen. Diese Norm regelt insbesondere die Bauweise der Latte und die Art ihrer Teilung. Weiterhin sind die zulässigen Toleranzen u.a. für den Nullpunktfehler, der Ebenheit der Aufsetzfläche sowie der Maßstab der Lattenteilung festgelegt. Ziel der Überprüfung ist es, zu kontrollieren, ob die Nivellierlatten den Anforderungen der DIN 18717 genügen und für Präzisionsnivellements geeignet sind.

Zur Untersuchung einer Nivellierlatte steht an der Hochschule Neubrandenburg ein Lattenkomparator zur Verfügung. Die Überprüfung findet in einer vertikalen Klimakammer statt, in der die Nivellierlatten in einem Temperaturbereich von 5°C – 40°C kalibriert werden können. Die Latten werden dazu in einem Schlitten eingespannt und im Hin- und Rückgang durch den Komparator gefahren. Zur Messung der Lattenposition wird ein Laserinterferometer mit einer Längenmessgenauigkeit von kleiner einem Mikrometer eingesetzt. Die Erfassung der Teilungsstriche erfolgt durch eine Präzisions-CCD-Kamera. Der gesamte Messablauf wird durch einen Computer gesteuert und erfolgt automatisch. Bei der Messung werden pro Teilungsstrich zwei Kanten detektiert und die dazugehörigen Werte des Interferometers gespeichert.

Abbildung 21: Lattenkomparator

Bei der Auswertung wird mit Hilfe eines Korellationsverfahrens das gemessene Lattenbild mit dem im System gespeicherten Soll-Lattenbild verglichen. Aus dem Soll-Ist-Vergleich der Kantenpositionen werden Lageverbesserungen für jede einzelne Kante erhalten. Bezieht man auf diese Lageverbesserungen eine Regressionsgerade, gibt die Steigung dieser Geraden das mittlere Lattenmeter m₀ bei der zum Zeitpunkt der Messung herrschenden Temperatur an. Bei der Komparatoruntersuchung wird ferner der Nullpunktfehler der Nivellierlatte geprüft. Dabei wird der Abstand einer Bezugskante auf dem Invarband zur Aufsetzfläche ermittelt und mit dem Sollwert verglichen. Die Differenz wird als Verbesserung I_{k}^{0} im Protokoll angegeben. Eine Lattenablesung bezieht sich allerdings immer auf die Mitte eines Teilungsstriches. Tritt am Bezugsstrich nun ein Strichdickenfehler auf, hat dies einen unmittelbaren Einfluss auf den Nullpunktfehler. Der um den Strichdickenfehler korrigierte Nullpunktfehler wird im Prüfprotokoll als Nullpunktverbesserung I^{0} angegeben. Bei Nivellierlatten mit Strichteilung werden für jede Teilung die Einzelstrichverbesserungen im Protokoll mit aufgeführt. Dies ist grundsätzlich auch bei Barcodelatten möglich, macht aber keinen Sinn, da Digitalnivelliere über einen Lattenabschnitt mitteln. Bei Barcodelatten wird daher ein Mittelwert v_G aller Einzelstrichverbesserungen berechnet und im Protokoll angegeben.

Die in der DIN 18717 geforderte Ebenheit der Aufsetzfläche wird mit Hilfe eines Haarlineals geprüft. Dieses wird im Gegenlicht langsam über die Aufsetzfläche gezogen. Bei Unebenheiten ist zwischen der Aufsetzfläche und dem Haarlineal ein Lichtspalt zu sehen. Bei den untersuchten Nivellierlatten habe ich keine Unebenheiten festgestellt. Die Überprüfung der Rechtwinkligkeit zwischen Aufsetzfläche und Lattenteilung erfolgte mit Hilfe einer speziellen Prüfvorrichtung. Diese ist an der Nordwand des Labors angebracht und besteht aus einem Rahmen mit sechs Messuhren. Die zu untersuchende Nivellierlatte wird zunächst mit der Teilung zur Wand in diesen Rahmen eingespannt und die Messuhren werden abgelesen. Anschließend wird die Latte gedreht und die Messuhren werden erneut abgelesen.

Abbildung 22: Prüfvorrichtung für den Lattenfuß und Lage der Kontrollpunkte

Aus den Ablesungen der Messuhren werden die Abweichungen vom rechten Winkel als Längs- und Querfehler berechnet. Diese Fehler dürfen nach DIN 18717 ± 5' nicht überschreiten. Die Dosenlibellen wurden auf einem vertikalen Prüfplatz kontrolliert und justiert.

Bei der Lattenkalibrierung nach DIN 18717 wurden keine Überschreitungen der zulässigen Toleranzen festgestellt. Die untersuchten Nivellierlatten sind für Präzisionsmessungen geeignet. Die Prüfprotokolle können dem Anhang C entnommen werden. In der folgenden Tabelle sind die wesentlichen Ergebnisse der Lattenuntersuchung zusammengefasst.

Lattentyp		zulässig nach	LD12	LD13
Lattennummer		DIN 18717	13315	15323
Gebrauchslänge			2 m	3 m
Längsabweichung Lattenfuß		± 5'	- 0,3'	0,7'
Querabweichung Lattenfuß		± 5'	0,0'	0,0'
Ebenheit der Aufsetzfläche		0,02 mm	i.O.	i.O.
Dosenlibelle			justiert	justiert
Maßstabsfaktor bei 20°C	LD12	± 0,02 mm + 0,04 mm	- 7,84 µm	3,24 µm
	LD13	± 0,02 mm + 0,06 mm	± 0,76 ppm	± 1,16 ppm
Lattennullpunktfehler		± 0,05 mm	0,003 mm ± 0,006 mm	-0,018 mm ± 0,005 mm

Tabelle 7: Ergebnisse der Lattenkalibrierung
4 Eingesetzte Software

Auf die, in dieser Diplomarbeit benutzte, Mess- und Auswertesoftware wird in diesem Kapitel näher eingegangen. Ferner wird ein von mir selbst entwickeltes Programm vorgestellt, das zum einen eine graphische Benutzeroberfläche für das Ausgleichungsprogramm Xdesy bereitstellt und zum anderen ein Tool enthält, mit der die Zeit zur Erstellung der Xdesy-Steuerdatei erheblich reduziert werden konnte.

4.1 AXYZ

Das Industriemesssytem AXYZ, das die Firma Leica seit 1996 anbietet, ist eine Softwareplattform zur Steuerung von Theodolit-Messsytemen und Leica Lasertrackern. Die Software wurde entwickelt für Bau- und Prüfarbeiten, die eine online Messung und Auswertung erfordern. AXYZ ist modular aufgebaut und läuft auf Computern mit Windows Betriebssystem. Mit Hilfe der AXYZ-Software habe ich die Lasertracker Messungen durchgeführt.

Die Systemgrundlage der AXYZ Software bildet eine Datenbank und das Kerndatenmodul (CDM). Im CDM werden alle System- und Jobparameter definiert sowie die Berechnungen und Analysen ausgeführt. Als Kernfunktionen sind der Datenmanager und das Orientierungsmodul fest ins CDM integriert. Optional kann das CDM um die Graphikmodule VIEW und CAD ergänzt werden.

- Der Datenmanager ermöglicht den Zugriff auf die in der Datenbank gespeicherten Daten. Er zeigt die gespeicherten Daten an, ermöglicht das Editieren und lässt die manuelle Eingabe neuer Daten zu.
- Mit dem Orientierungsmodul ist man in der Lage, mehrere Instrumentenstandpunkte miteinander zu verknüpfen. Dazu werden die Messungen zu den Orientierungspunkten genutzt und die Stationsparameter in einer Bündelausgleichung bestimmt.
- Die Graphikmodule VIEW und CAD erlauben eine visuelle Darstellung der in der Datenbank gespeicherten Daten. Mit dem CAD-Modul können CAD-Modelle in das AXYZ System importiert und gemessene Daten direkt mit dem Modell verglichen werden.

An das AXYZ CDM kann eine Reihe von Sensor-Modulen angehängt werden. Diese Module übernehmen die Steuerung der entsprechenden Sensorsysteme und stellen die Datenübertragung zum CDM sicher.

Die Module STM (Single Theodolite Module) und MTM (Multi Theodolite Module) dienen zur Steuerung von Messungen mit einem oder mehreren Theodoliten bzw. Totalstationen. Es können bis zu 16 Instrumente gleichzeitig an einen Computer angeschlossen werden. Die einzelnen Funktionen der Instrumente sowie die Übertragung der Messungen werden von den beiden Modulen gesteuert. Die Auswertung und Koordinatenberechnung erfolgt im CDM.

Das Laser Tracker Modul (LTM) findet, wie der Name schon sagt, in Verbindung mit einem Lasertracker als Sensor Verwendung. Im Gegensatz zu den Theodolit-Modulen kommuniziert das LTM nicht direkt mit dem Lasertracker, sondern mit dem Controller des Trackers. Dieser überwacht die einzelnen Sensoren und liest deren Rohdaten aus. Die korrigierten und gefilterten Daten werden über einen Netzwerkanschluss zum Applikationsrechner und damit zum CDM weitergeleitet. Im CDM erfolgt dann wieder die Berechnung der Koordinaten. Auf Grund der großen Datenmengen von bis zu 1000 Punkten/Sekunde kann immer nur ein Tracker mit dem LTM gesteuert werden.

Neben der Steuerung des Lasertrackers sind umfangreiche Mess- und Analysefunktionen in das LTM integriert. So können z.B. automatisierte Messungsabläufe erstellt, Digitalisierungen mit vorgegebenen Rasterweiten vorgenommen oder Ausrichtarbeiten durch einen Online-Vergleich zwischen Ist- und Sollzustand durchgeführt werden.

4.2 Xdesy

Xdesy ist ein Ausgleichungsprogramm für geodätische Netze, Koordinatentransformationen und photogrammetrischer Bündelblockausgleichungen. Es wurde von Dr.-Ing Fredie Kern entwickelt und kann als Freeware¹ unter www.xdesy.de im Internet heruntergeladen² werden. Das Programm ist vielseitig verwendbar, da damit nicht nur einzelne Ausgleichungsprobleme, sondern auch miteinander verknüpfte Probleme gelöst werden können. Diese Software in der Version 1.8.39 habe ich eingesetzt, um die Messungen der Lasertracker zusammen mit den Nivellements auszugleichen.

4.2.1 Arbeitsweise von Xdesy

Die Grundlage der Berechnungen von Xdesy ist die Ausgleichung nach vermittelnden Beobachtungen. Die Schätzung der Unbekannten erfolgt dabei nach der Methode der kleinsten Quadrate.

¹ Eine Kopie dieses Programms befindet sich auf der beiliegenden CD.

² Stand: Februar 2008

Der Rechengang lautet dabei wie folgt:

•	Aufstellen des Beobachtungsvektors	L
•	Aufstellen des genäherten Beobachtungsvektors	$L_0 = f(X_0)$
•	Berechnen des gekürzten Beobachtungsvektors	$l = L - L_0$
•	Aufstellen der $A - Matrix$ mit den partiellen Ableitungen de chungen	er Beobachtungsglei-
•	Aufstellen der Kovarianzmatrix der Beobachtungen	$\mathcal{Q}_{\scriptscriptstyle LL}$
•	Berechnen der Gewichtsmatrix	$P = Q_{LL}^{-1}$
we	eitere Rechenschritte sind:	
•	Absolutglied	$n = A^T \cdot P \cdot l$
•	Normalgleichungsmatrix	$N = A^T \cdot P \cdot A$
•	Kovarianzmatrix der Unbekannten	$Q_{\hat{x}\hat{x}}=N^{-1}$
•	Vektor der geschätzten Unbekannten	$\hat{x} = Q_{\hat{x}\hat{x}} \cdot n$
•	Verbesserungsvektor	$v = A \cdot \hat{x} - l$
•	empirische Varianz der Gewichtseinheit	$s_0^2 = \frac{v^T \cdot P \cdot v}{n - u}$
•	ausgeglichene Unbekannte	$\hat{X} = X_0 + \hat{x}$
•	ausgeglichene Beobachtungen	$\hat{L} = L_0 + l + v$
•	Kovarianzmatrix der ausgeglichenen Beobachtungen	$Q_{\hat{L}\hat{L}} = A \cdot Q_{\hat{x}\hat{x}} \cdot A^T$

4.2.2 Xdesy Steuerdateien

Xdesy ist als Filterprogramm konzipiert, das eine Datei einliest, diese verarbeitet und das Ergebnis als neue Datei abspeichert. Die Datei, die eingelesen wird, ist die sog. Steuerdatei, in der das Ausgleichungsproblem in allen Einzelheiten dargestellt ist. Alle Angaben zu den Beobachtungen, den Unbekannten und zum stochastischen Modell müssen zeilenweise in einer festgelegten Form in dieser Steuerdatei eingegeben werden. Xdesy verarbeitet diese Datei zeilenweise, wobei das erste Zeichen einer Zeile, das Steuerzeichen, die Verarbeitung aller nachfolgenden Daten bestimmt.

Zunächst werden in der Steuerdatei die Koordinaten aller Fest- und Neupunkte deklariert. Dies geschieht mit den Steuerzeichen *P* für die Koordinaten und *H* für die Höhe eines Punktes. Die allgemeine Syntax für die *P*-Sätze bzw. *H*-Sätze lautet wie folgt:

- P Punktkennzeichen Kennung Hochwert (X) Rechtswert (Y)
- H Punktkennzeichen Kennung Höhe (Z)

Beispiel für den TP100:

P TP100 11 1050.000 550.000 H TP100 10 100.000

Über die Kennung wird festgelegt, welche Koordinaten bekannt bzw. unbekannt sind. Im obigen Beispiel sind sowohl die Lagekoordinaten als auch die Höhe unbekannt (Kennung 11 bzw. 10). Der TP100 ist demnach ein Neupunkt.

Nach den Koordinaten erfolgt die Definition des stochastischen Modells in der Steuerdatei. Dies geschieht mit dem Steuerzeichen *s*. Die *s*-Sätze legen die Standardabweichung a priori für jeden Messwerttyp fest. Die Syntax für einen *s*-Satz lautet:

s Messwerttyp[(Gruppe)] Wert1 Wert2

Beispiel für Horizontalrichtungen (H), Zenitdistanzen (V) und Schrägstrecken (D):

s H 0.0003 s V 0.0003 s D 0.002 0.002

Nach den Standardabweichungen der Messwerte beschreibt das Steuerzeichen S den Standpunkt, auf dem die Beobachtungen durchgeführt wurden. Die Syntax für einen S-Satz lautet:

S Punktkennzeichen Kennung Orientierungsunbekannte [Instrumentenhöhe]

Die Kennung legt fest, ob die Orientierungsunbekannte und/oder die Instrumentenhöhe in der Ausgleichung mitgeschätzt werden soll.

Mit dem Steuerzeichen *M* findet die Beschreibung der Beobachtungen, die auf einem Standpunkt durchgeführt wurden, statt. Die *M*-Sätze werden direkt hinter dem zugehörigen *S*-Satz der Steuerdatei hinzugefügt. *M*-Sätze werden wie folgt deklariert:

M Punktkennzeichen Messwerttyp[(Gruppe)] Wert [Standardabweichung]

Beispiel für 1 Standpunktsatz mit den jeweiligen Beobachtungen:

S	N101	10	0.0	0.000
М	N102	Н	0.000	
М	N102	V	100.000	
М	N102	D	100.000	
М	N100	Н	49.998	
М	N100	V	99.998	
М	N100	D	70.709	

Die in diesem Abschnitt genannten Beispiele für die Syntax der Steuerdatei stehen beispielhaft für terrestrische Beobachtungen mit einem Tachymeter. Für weitere Festlegungen zur Erstellung der Steuerdatei wird an dieser Stelle auf das Xdesy-Handbuch¹ für die Version 1.3 verwiesen.

4.2.3 Ausführen von Xdesy

Xdesy ist von der Kommando-Ebene aus mit zusätzlichen Aufrufparametern zu starten. Die Aufrufparameter entscheiden, über die Verarbeitung der Daten in der Steuerdatei. Dadurch kann ein Ausgleichungsproblem nach unterschiedlichen Methoden bearbeitet werden, ohne die Steuerdatei editieren zu müssen. Die Syntax für den Aufruf von Xdesy lautet:

```
xdesy Parameter1 [-Parameter2] [-Parameter3] ... [-ParameterN]
```

Der erste Aufrufparameter ist immer der Dateiname der Steuerdatei. Die folgende Übersicht zeigt eine Auswahl von optionalen Aufrufparametern:

- -a Ausgleichung nach vermittelnden Beobachtungen
- -I[Testschranke] L1-Norm-Schätzung
- -d[Testschranke] Ausgleichung mit Data-Snooping
- -f freie Ausgleichung
- -n automatische Berechnung von Näherungswerten
- -o[Datei] Ausgabe des Ergebnisses in die angegebene Datei

Weitere Aufrufparameter kann man dem Xdesy-Handbuch entnehmen.

Im folgenden Beispiel wird Xdesy aufgerufen. Das Programm liest die Steuerdatei "test.dat" ein, führt eine freie Ausgleichung nach vermittelnden Beobachtungen inklusive. Data-Snooping zur Grobfehlersuche durch und speichert das Berechnungsergebnis in der Datei "ergebnis.dat".

Abbildung 23: Ausführen von Xdesy mit Parametern

Quelle: Xdesy-Handbuch

¹ auf der beiliegenden CD

4.3 Xdesy-Tools

Bei der Einarbeitung in das Ausgleichungsprogramm Xdesy habe ich festgestellt, dass der Aufruf des Programms über die Kommando-Zeile doch recht aufwendig ist. Folgende Schritte müssen bei jedem Programmstart durchgeführt werden:

- Starten der Konsole
- Wechseln in das Xdesy-Programmverzeichnis
- Eingabe der Steuerdatei samt Pfad
- Eingabe zusätzlicher Optionen

Gerade bei langen Pfadangaben dauert dies recht lange und Tippfehler können sich leicht einschleichen. Ein weiteres Manko ist, dass man die möglichen Optionen für die Ausgleichung erst im Xdesy-Handbuch nachschlagen muss.

Im Rahmen dieser Diplomarbeit habe ich daher eine graphische Benutzeroberfläche (Xdesy-GUI) entwickelt, um die Ausführung von Xdesy zu optimieren. Die möglichen Parameter und Optionen für die Ausgleichung können nun interaktiv ausgewählt werden. Ein ständiges Nachschlagen im Xdesy Handbuch entfällt somit.

XI Xdesy-Tools 1.0.0	
Datei Bearbeiten Ansicht Hilfe	
Xdesy GUI File Creator	
Eingabedateien Xdesy - Programmpfad C:\Programme\wdesy Suchen Xdesy - Steuerdatei test.mkr Suchen	Ausgabedateien Image: Ergebnisprotokoll erzeugen Dateiname LOG - Datei erzeugen Dateiname Image: Dateiname logdatei log
Ausgleichung ohne (Steuerdatei formatieren) ✓ Ausgleichung (nach vermittelnden Beobachtungen)	XML - Datei erzeugen Dateiname xmldesy xml Stylesheet xmldesy xsl Typ Attribute
L1 - Norm - Schätzung Testschranke 1.96 Loo - Norm - Schätzung (Min - Max - Methode) Image: State of the first state of the sta	Iterative Ausgleichung Iterationsschritte durchführen Vor - Ausgleichung 10 End - Ausgleichung 10
Data - Snooping ✓ durchführen Grenzwert 3.6	Abbruchkriterium Schranke definieren Schranke - Vor 1e- 6 Schranke - End 1e- 6 6
durchführen Option über geodätisches Rechnen	Varianzkomponentenschätzung
Image: Second state Ausgabedatei plot tmp Image: Second state Format hpgl	Netzplanung Steuerdatei mit Koordinaten, Standpunkt- und Messwert- Sätzen wird benötig!
3D Netzskizze Ausgabedatei Netzskizze erstellen (VRML - Format) Option	Run Xdesy Ergebnisprotokoll anzeigen
Optionen Debug - Modus Meldungen unterdrücken	Status: (xdesy.em)
Bereit	

Abbildung 24: Xdesy-Tools (Xdesy GUI, Anwendungsbeispiel)

Grundlage des Programms sind der Xdesy-Programmpfad sowie die Steuerdatei, die über entsprechende Dialoge ausgewählt werden können. Die Steuerdatei sollte sich jedoch nicht im Xdesy-Programmverzeichnis befinden, da sonst ein Abstürzen des Programms möglich ist. Die Parameter und Optionen können durch Setzen der entsprechenden Häkchen und Eintragungen in die entsprechenden Felder ausgewählt werden. Hierbei wird auf den Fachverstand des Nutzers vertraut, da keine Überprüfung der Eintragungen auf Gültigkeit erfolgt.

Ist die Steuerdatei ausgewählt und alle Angaben gemacht, erfolgt durch Klick auf den Button "Run Xdesy" der Start der Ausgleichung. Dazu wird im Xdesy-Programmverzeichnis eine Batch-Datei angelegt und diese anschließend ausgeführt. Soll das Ausgleichungsergebnis in eine Ergebnisdatei geschrieben werden, kann dieses bereits vom Programm angezeigt werden. Nach Beendigung der Ausgleichung wird die zuvor erzeugte Batch-Datei wieder gelöscht. Die Ergebnisdatei, die Log-Datei und die 2D-Netzskizze werden in dem Verzeichnis, in dem sich die Steuerdatei befindet, gespeichert. Optional erzeugte XML-Dateien sowie die Dateien der 3D-Netzskizze sind im Xdesy-Programmverzeichnis zu finden. Der Status der Ausgleichung wird in einer separaten Statusleiste angezeigt. Enthält die Meldung ein "ok", ist die Ausgleichung erfolgreich durchgelaufen. Bei anderen Meldungen wurde die Ausgleichung abgebrochen. Um den Grund für den Abbruch zu ermitteln, kann in die Datei "xdesy.err" geschaut werden. Diese Datei befindet sich im Xdesy-Programmverzeichnis. In der Regel führen fehlerhafte Einträge in der Steuerdatei zum Abbruch der Ausgleichung.

Die Syntax zur Erstellung der Xdesy-Steuerdatei ist einfach aufgebaut und man kann die Datei mit jedem beliebigen Text-Editor schreiben. Im Zuge der Auswertung der Lasertrackerdaten hat sich jedoch gezeigt, dass das manuelle Erstellen der Steuerdatei sehr zeitintensiv und anfällig für Fehler ist. Daher habe ich die graphische Benutzeroberfläche um ein Tool (File Creator) erweitert, mit dem sich die Steuerdatei automatisiert erstellen lässt. Gerade bei sehr vielen Messwerten auf einem Standpunkt kann durch die Anwendung dieses Programms der Arbeitsaufwand im Vorfeld der Ausgleichung reduziert und Fehler durch den automatischen Datenfluss vermieden werden.

Projektdaten Projekt: Testprojekt Bearbeiter: S. Müller Quelle: Messung vom 29.02.2007 Einheiten: Strecke Winkel gon	Standpunktsatz ACHTUNG !!! Standpunkt ID: TP101 Instumentenhöhe: 1.63 Standpunktsatz hinzufügen
Projektdaten hinzufügen	Messwertdatei: Messwerte_TP101.dat
Koordinatendatei: Festpunkte.dat Format: Punkt-Nr , x.xxx , y.yyy , z.zzz Suchen At der Punkte verwenden ✓ Festpunkte Lage ✓ Anschlusspunkte Höhe Neupunkte Koordinaten hinzufügen	Tafelhöhe: 1.30 m At der Messwerte verwenden ✓ Hz , V , D ✓ Hz , V ✓ V D ✓ D dH dH dH
Genauigkeiten Horizontalrichtung: 0.003 gon Höhenunterschied: Vertikalwinkel: 0.003 gon m Stracks 0.002 m stracks	Verschau
strecke: 0.002 m + m/km + 0.002 m/km	Steuerdatei erzeugen

Abbildung 25: Xdesy-Tools (File Creator, Anwendungsbeispiel)

Die graphische Benutzeroberfläche des File Creators gliedert sich in 6 separate Sektionen. Diese sind so gewählt, dass der Benutzer Schritt für Schritt alle wesentlichen Elemente der Xdesy-Steuerdatei erstellen kann. Die einzelnen Sektionen bieten folgende Funktionen:

Projektdaten

Hier besteht die Möglichkeit, die Projektdaten einzugeben. Diese Daten werden in die Steuerdatei geschrieben und erscheinen ebenfalls in der Protokolldatei. Weiterhin können hier die Einheiten der Beobachtungen gesetzt werden.

Koordinaten

Hier werden die Koordinaten aller Punkte in die Steuerdatei geschrieben. Mit dem Button "Suchen" erfolgt die Auswahl einer Koordinatendatei. Diese Koordinatendatei muss das Format:

		Punkt-ID,x.xxx,y.yyy,z.zzz
Beispiel	Lagepunkt	TP100,1050.000,550.000,0
Beispiel	Höhenpunkt	TP101,0,0,50.000
Beispiel	3D Punkt	TP102,3750.000,5550.000,100.000

haben. Die einzelnen Werte müssen durch Komma getrennt sein. Ist die Koordinatendatei eingelesen, kann der Nutzer entscheiden, welche Daten der Steuerdatei hinzugefügt werden sollen. Durch die Auswahl der "Art der Punkte" werden bereits die entsprechenden Kennungen in der Steuerdatei gesetzt. Es empfiehlt sich daher, die Koordinaten der Festpunkte und der Neupunkte in getrennte Dateien zu schreiben. Durch die Auswahl "verwenden" kann der Nutzer festlegen, welche Koordinaten (Lage, Höhe oder Lage + Höhe) in die Steuerdatei geschrieben werden sollen.

Genauigkeiten

Hier werden die Genauigkeiten der Beobachtungen in die Steuerdatei geschrieben. Die Genauigkeiten der einzelnen Beobachtungen können entsprechend ihren Einheiten in die jeweiligen Felder eingetragen werden. Es ist möglich, verschiedene Instrumente mit unterschiedlichen Genauigkeiten zu definieren. Die Definition erfolgt über die Angabe der Instrumentengruppe. Beim Schreiben der Genauigkeiten in die Steuerdatei, erhöht sich automatisch die Nummer der Instrumentengruppe. Ein neues Instrument kann durch erneutes Schreiben der Genauigkeiten in die Steuerdatei.

Standpunktsätze

Hier werden die Standpunktsätze in die Steuerdatei geschrieben. Standpunkt ID und Instrumentenhöhe können eingetragen werden. Da auf einem Standpunkt unterschiedliche Beobachtungen vorliegen können, wird die Kennung für den Standpunkt grundsätzlich auf 0 gesetzt. Die Kennung muss daher unbedingt in der erstellten Steuerdatei überprüft und ggf. geändert werden.

Messwertsätze

Hier werden die Messungen auf einem Standpunkt in die Steuerdatei geschrieben. Verarbeitet werden können die terrestrischen Beobachtungen Horizontalrichtungen, Zenitdistanzen, Schrägstrecken und Höhenunterschiede. Mit dem Button "Suchen" kann eine Messwertdatei ausgewählt werden. Diese Messwertdatei muss das Format:

		Punkt-ID, Hz, V, D, dH
Beispiel	Richtungsmessung	TP100,323.567,99.765,0,0
Beispiel	Streckenmessung	TP101,0,0,157.532,0
Beispiel	Höhenunterschied	TP102,0,0,0,1.345

haben. Die einzelnen Messwerte müssen durch Komma getrennt sein. Durch die Auswahl der "Art der Messwerte" wird festgelegt, welche Daten aus der Messwertedatei in die Steuerdatei übernommen werden sollen. Mit der Option "verwenden" kann der Nutzer festlegen, welche Messungen aktiv gesetzt werden sollen. Es werden grundsätzlich alle Messungen (je nach Auswahl der "Art der Messwert") in die Steuerdatei geschrieben. Diejenigen Messungen, die als inaktiv gesetzt sind, werden in der Steuerdatei lediglich auskommentiert. Mit der Option "Messwerte gruppieren" besteht die Möglichkeit, gleiche Messwerttypen zu gruppieren. Beispiel:

nicht	gruppiert	Punkt1	Hz	gruppiert	Punkt1	Hz
		Punkt1	V		Punkt2	Hz
		Punkt1	D			
					Punkt1	V
		Punkt2	Hz		Punkt2	V
		Punkt2	V			
		Punkt2	D		Punkt1	D
					Punkt2	D

Die Genauigkeiten werden durch die Angabe der Instrumentengruppe einem Instrument zugeordnet. Durch die Angabe der Instrumentengruppe bei den Messwerten wird die Verbindung zum entsprechenden Instrument hergestellt.

Da die Messungen immer einem Standpunkt zugeordnet sind, erfolgt das Hinzufügen von Standpunktsätzen und Messwertsätzen zur Steuerdatei immer im Wechsel.

Vorschau

Mit dem Button "Vorschau" kann jederzeit Einsicht in die Steuerdatei genommen werden.

Mit dem Button "Steuerdatei erzeugen" wird die eigentliche Steuerdatei erstellt. Es öffnet sich ein Fenster, das den Nutzer dazu auffordert, einen Pfad und einen Dateinamen für die Steuerdatei anzugeben. Durch Klicken auf den Button "Speichern" wird die Steuerdatei in das angegebene Verzeichnis geschrieben. Die so erstellte Steuerdatei muss grundsätzlich mit einem Text-Editor nachbearbeitet werden. Insbesondere die Kennungen der Standpunktsätze und der Koordinaten gilt es zu kontrollieren und ggf. zu ändern. Die möglichen Werte, die die Kennungen annehmen können, werden bereits als Hinweise mit in die Steuerdatei geschrieben. Für weitere Optionen wird auf das Xdesy-Handbuch verwiesen.

Die Benutzeroberfläche und der File Creator habe ich unter dem Programmnamen "Xdesy-Tools" zu einer eigenständigen und lauffähigen Applikation zusammengefasst. Die Programmierung erfolgte in der Programmiersprache C#¹. Als Programmierplattform wurde Microsoft Visual Studio 2005 Express Edition verwendet. Zum Ausführen des Programms ist das .NET Framework² notwendig.

¹ der Programmcode befindet sich auf der beiliegenden CD

² auf der beiliegenden CD

5 Vorbereitung und Durchführung der Messungen

Die Vermessung des Hallennetzes in der Torushalle erfolgte mit drei verschiedenen Messsystemen: dem Lasertracker, der Präzisionsschlauchwaage und dem Digitalnivellier. Der Einsatz dieser Messgeräte musste daher entsprechend vorbereitet werden, um einen reibungslosen und schnellen Ablauf der Messungen zu gewährleisten.

5.1 Vorbereitung der Messungen

Für die Messung mit dem Lasertracker habe ich zunächst ein Messkonzept erstellt, das Überlegungen zum Erreichen einer hohen Genauigkeit sowie zur praktischen Durchführung der Messungen enthielt. Folgende Punkte sollten u.a. berücksichtigt werden:

- simultane Messung mit beiden vorhandenen Lasertrackern
- Messung im "Auto-Inspekt-Modus" (d.h. keine Berührung des Trackers)
- Horizontierung des Trackers mit dem Nivel20
- Standpunkte so wählen, dass möglichst viele Punkte gemessen werden
- Messpunkte werden flächenhaft ausgesteckt
- 50% Überlappung beim Wechsel der Reflektoren

Vor Beginn der Messungen habe ich zunächst die Vermarkungen der Netzpunkte kontrolliert. Dabei stellte sich heraus, dass drei Messpunkte in der Süd-Ost-Ecke der Torushalle bereits überbaut wurden. Diese Netzpunkte wurden aufgegeben und in der Messplanung nicht weiter berücksichtigt. Anschließend habe ich die im IPP vorhandenen Reflektoren auf ihre Einsatzbereitschaft überprüft. Insgesamt standen 43 Reflektoren für die Messungen zur Verfügung. Mit der Anzahl der Reflektoren konnte ich danach eine detaillierte Messungsplanung aufstellen. Es wurde festgelegt, dass 22 schwer erreichbare Hochpunkte dauerhaft mit den Reflektoren ausgesteckt bleiben sollen, um die Zeit für den Umbau der restlichen Punkte so gering wie möglich zu halten. Die restlichen 21 Reflektoren wurden in den einzelnen Auto-Inspekt-Durchgängen verplant. Die Aufteilung der Reflektoren kann dem Anhang D entnommen werden.

Die Präzisionsschlauchwaage sollte zum ersten Mal im IPP eingesetzt werden. Daher musste ich im Vorfeld die Höhenbolzen vermarken. Die groben Positionen der Höhenbolzen an den Hallenwänden wurden in Abstimmung mit dem Messteam des IPP festgelegt. Die genaue Höhenlage jedes Bolzens musste, auf Grund des begrenzten Messbereiches der Schlauchwaage von ± 5cm, abgesteckt werden. Die Absteckung erfolgte mit dem Industrietachymeter TDA5005. Am Okular des Tachymeters war ein Diodenlaser angebracht, der die Positionen der Höhenbolzen direkt auf die Wand projizierte. Die Vermarkung des Schlauchwaagensystems besteht aus zwei Teilen, dem eigentlichen Höhenbolzen und jeweils zwei sog. Steinschrauben. Die Steinschrauben liegen unterhalb des Höhenbolzens und dienen der Befestigung des Haltebügels. Die genaue Lage der Steinschrauben in Bezug zum Höhenbolzen wird mit Hilfe einer Schablone festgelegt. Daher mussten zunächst die Höhenbolzen in die Wände eingebracht werden bevor die Steinschrauben vermarkt werden konnten. Die Höhenbolzen und die Steinschrauben wurden mit Hilfe eines 2-Komponenten-Klebers in den Wänden befestigt und konnten nach einer Aushärtezeit von jeweils 24 Stunden genutzt werden.

Für das geometrische Nivellement musste zunächst nach einer Möglichkeit gesucht werden, den Bezugspunkt der Vermarkung anzutasten. Die Vermarkung selbst bietet keinen fest definierten Messpunkt. Dieser liegt etwa 15mm vor der Vermarkung, genau in der Mitte eines eingesetzten 1,5" CCR. In einer ersten Variante, den Bezugspunkt anzutasten, sollte eine Kugel in die Vermarkung eingesetzt, und mit einem Haltebügel gegen ein Herausrutschen gesichert werden. Die Nivellierlatte hätte dann in der normalen Gebrauchsstellung genutzt werden können. Diese Idee wurde allerdings wieder verworfen, da befürchtet wurde, dass es durch das Gewicht der Nivellierlatte zu einer Deformation der Vermarkung kommt.

Abbildung 26: Nivellieradapter

Als Alternative dazu habe ich einen Adapter entworfen und gebaut, der oben auf der Nivellierlatte an den Befestigungspunkten für die Haltestreben befestigt wird. Dieser besteht aus der Kugel eines 1,5" CCR, die über einen Winkel mit einer Grundplatte verschraubt ist. Dieser Adapter bietet folgende Vorteile:

- Nutzung der Latte in normaler Gebrauchsstellung
- keine Krafteinwirkung auf die Vermarkung
- gleiche Zentriereigenschaften wie ein CCR durch "ideale Kugel"

Die Zentrierung des Adapters in der Vermarkung erfolgt durch den in der Vermarkung eingebauten Magneten. Dieser ist allerdings nicht so stark, dass er das gesamte Gewicht der Nivellierlatte halten kann. Daher ist die Nivellierlatte beim Messen gegen ein Herausrutschen aus der Vermarkung zu sichern. Nachteil dieser Konstruktion ist, dass sich die Lattenablesungen nicht auf den Adapter sondern wie üblich auf den Lattenfuß beziehen. Die Höhenunterschiede werden dadurch in einem um den Abstand zwischen Lattenfuß und Adapter versetzen Niveau bestimmt. Der Abstand zwischen Lattenfuß und Adapter lässt sich als ein Nullpunktfehler interpretieren. Dieser Nullpunktfehler zeigt aber bekanntlich keine Wirkung, wenn auf den Festpunkten immer ein und dieselbe Latte benutzt wird. In diesem Fall braucht seine Größe auch nicht bekannt sein. Zu den weiteren Vorbereitungen des geometrischen Nivellements zählte auch das Festlegen und Abstecken der Nivellementswege. Um den Einfluss des Ziellinienfehlers zu eliminieren, wurden die Latten- und Instrumentenstandpunkte so gewählt, dass sich bei der Messung gleiche Zielweiten ergeben.

5.2 Durchführung der Messungen

Die Neuvermessung des Hallennetzes begann mit den Lasertrackermessungen. Die einzelnen Stationen waren dabei so angeordnet, dass möglicht viele Punkte beobachtet werden konnten. Ferner wurde darauf geachtet, dass sich die Stationen in unterschiedlichen Höhen befinden, damit sich gute Schnittbedingungen für die Netzpunkte ergeben. Gemessen wurde mit beiden Lasertrackern des IPP. Der LTD800 war auf ein ausfahrbares Stativ montiert und stand immer auf dem Hallenboden. Der LTD500 wurde auf die zentrale Messsäule, sowie auf den Treppenhäusern und Plattformen in der Torushalle aufgebaut. Als Messsoftware kam AXYZ im Auto-Inspekt-Modus zum Einsatz. Das bedeutet, dass der Lasertracker selbständig alle ausgewählten Punkte anfährt und die Messung auslöst. Je Auto-Inspekt-Durchgang fanden 5 Einzelmessungen statt. Anschließend wurden die CCR umgesteckt und ein neuer Durchgang gestartet. Insgesamt waren 7 Auto-Inspekt-Durchgänge nötig, um das Netz von einer Station aus vollständig zu vermessen. Da die Streckenmessgenauigkeit des Lasertrackers wesentlich besser ist als die Richtungsmessgenauigkeit, sollte das Hallennetz ursprünglich als ein reines Streckennetz gemessen und ausgewertet werden. Dazu war es erforderlich, jeden Punkt mindestens 4-mal anzumessen, um eine Überbestimmung für die Ausgleichung zu gewährleisten. Auf den jeweils ersten 5 Lasertracker-Stationen wurde versucht, dies zu erreichen. Die restlichen Stationen dienten dazu, diejenigen Punkte zu messen, bei denen diese Forderung auf Überbestimmung noch nicht erfüllt war. Als zusätzliche Option sollten auch Horizontalrichtungen und Zenitdistanzen in der Auswertung mit berücksichtigt werden. Dazu habe ich die Lasertracker vor der Messung sorgfältig mit dem Nivel20 horizontiert. Das Nivel20 wurde bereits am Vortag der Messung in Betrieb genommen, um die bei diesem Sensor üblichen Einlaufeffekte auszuschalten. Die Horizontierung erfolgte, sofern technisch möglich, auf den ersten 5 Stationen, da dort nahezu alle Netzpunkte gemessen werden konnten. Die erste Station des LTD800 wurde horizontiert und zusätzlich an der Schwerkraft ausgerichtet. Dazu steht innerhalb der AXYZ-Software ein entsprechendes Modul zur Verfügung. Bei diesem Vorgang wird die Schiefe der Stehachse des Trackers bestimmt, indem die Neigungen des Nivel20 an vier zueinander rechtwinklig stehenden Positionen des Trackerkopfes bestimmt und gespeichert werden. Diese Neigungen gehen in die anschließende Berechnung der Koordinaten mit ein. Die zweite Station des LTD800 wurde ebenfalls horizontiert und an der Schwerkraft ausgerichtet. Zusätzlich erfolgte eine Orientierung zur ersten Station durch Aufmessen identischer Punkte. Dabei kam es jedoch zu unerwarteten Schwierigkeiten. Die Orientierung konnte nicht mit der gewünschten Genauigkeit von wenigen zehntel Millimetern berechnet werden, sondern nur mit einer Genauigkeit von etwa 1,5mm. Dieser Umstand wurde zunächst nicht weiter beachtet, da in der Netzausgleichung nur die originären Messwerte und nicht die daraus abgeleiteten Koordinaten Verwendung finden sollten. Zum Auffinden der Punkte in den Auto-Inspekt-Messungen war die Orientierungsgenauigkeit jedoch völlig ausreichend. Für die weiteren Stationen wurde allerdings festgelegt, jeden Lasertrackerstandpunkt separat zu betrachten und keine Orientierung zu vorherigen Stationen vorzunehmen. Die Speicherung sämtlicher Messwerte geschah automatisch innerhalb der entsprechenden AXYZ-Jobs.

Vor Beginn der Messung mit der Präzisionsschlauchwaage wurde der Verbindungsschlauch mit Wasser gefüllt und aufgehängt, damit das im Wasser gelöste Gas entweichen konnte. Dies dauerte ca. 4 Tage. Erst danach konnte das komplette Messsystem installiert werden. Nach einer kurzen Einarbeitungszeit bereitete der eigentliche Messvorgang keine besonderen Schwierigkeiten mehr. Auf die Einhaltung der Einschwingzeit nach dem Öffnen der beiden Absperrhähne habe ich besonders geachtet, damit sich die beiden Flüssigkeitsspiegel auf dasselbe Niveau einstellen konnten. Die Einschwingzeit berechnet sich näherungsweise nach:

mit:

$T = 2\pi \cdot \frac{D}{L}$	T = Einschwingzeit (in Sekunden)
$d \sqrt{2g}$	D = Innendurchmesser des Glaszylinders (42mm)
$T = 5.95 \cdot \sqrt{L}$	d = Innendurchmesser des Wasserschlauchs (10mm)
I = 3,95 WL	L = Gesamtlänge der Flüssigkeitssäule (in m)
	g = Erdbeschleunigung (9,81m/s²)

Bei der verwendeten Schlauchlänge von 50m ergab sich eine Schwingzeit von 42s. Obwohl die Torushalle klimatisiert ist, traten Temperaturdifferenzen an den Messwertaufnehmern auf. Daher mussten die Messung der Wassertemperatur sowie die Länge der vertikalen Wassersäule sehr sorgfältig geschehen. Die Wassertemperatur wurde mit einer Genauigkeit von 0,1°C und die Länge der vertikalen Wassersäule mit einer Genauigkeit von 5mm erfasst. Aus diesen beiden Größen wird in der Auswertung eine Temperaturkorrektion berechnet, die an den gemessenen Höhenunterschied angebracht werden muss. Die Größe der zu berechnenden Temperaturkorrektion hängt im Wesentlichen von der Länge der vertikalen Wassersäule ab. Man versucht daher diese Länge möglichst klein zu halten. Dies konnte bei der Messung zum Teil nicht eingehalten werden, da es gerade an der West- und an der Nordwand keine geeigneten Befestigungsmöglichkeiten für den Wasserschlauch gab. Das Netz der Schlauchwaagenmesspunkte besteht im Grunde aus zwei Teilnetzen. Diese sind in zwei Ebenen angeordnet und bestehen aus 3 bzw. 4+1 Höhenbolzen. Alle Messungen habe ich im Hinund Rückgang und innerhalb der Teilnetze in allen Kombinationen durchgeführt, um eine Überbestimmung für die Ausgleichung zu erreichen. Eine Verbindungsmessung der Teilnetze mit Hilfe der Schlauchwaage konnte nicht durchgeführt werden. Alle Messwerte wurden manuell erfasst und in vorbereitete Messformulare eingetragen.

Das geometrische Nivellement habe ich durchgeführt, um alle bisherigen Messungen zu stützen bzw. miteinander zu verbinden. Folgende Teilaufgaben waren dabei zu erledigen:

- Messung der unteren Ebene des Hallennetzes
- Verbindungsmessungen zum Schlauchwaagennetz
- Verbindungsmessungen zwischen den Teilnetzen des Schlauchwaagennetzes
- Bestimmung des Punktes SWB-SOO

Zunächst habe ich das Feinnivellement zur Bestimmung der Höhenunterschiede zwischen den Messpunkten in der unteren Ebene des Hallennetzes durchgeführt. Dabei erwies sich der Gebrauch des Nivellieradapters als sehr komfortabel. Die Kraft der Magnete in den Vermarkungen war ausreichend, um die Kugel genau zu zentrieren. Die Nivellierlatte war dadurch einigermaßen fest in der Vermarkung fixiert und brauchte nur noch lotrecht ausgerichtet werden. Dies geschah mit Hilfe eines Lattenrichters, da die Dosenlibelle an der Rückseite der Latte nicht mehr zugänglich war. Ein weiterer Vorteil war, dass das Nivellement auf dem Boden und mit einem handelsüblichen Stativ durchgeführt werden konnte. In den Ecken der Torushalle konnte ich die Höhenunterschiede direkt zwischen den Punkten messen. Die anderen Messungen erfolgten als Nivellement mit Wechselpunkten. Alle gemessenen Höhenunterschiede wurden sofort im Hin- und Rückgang beobachtet. Dadurch ergab sich eine sofortige Kontrolle der Messung. Um die Lasertrackermessungen möglichst gut zu stützen, wurde das Nivellement in der unteren Ebene des Hallennetzes mit einem hohen Redundanzanteil ausgeführt.

Abbildung 27: gemessene Höhenunterschiede im Hallennetz

Die zweite Aufgabe, die mit dem Digitalnivellier erledigt wurde, war die Verbindung der beiden Teilnetze des Schlauchwaagennetzes. Die Höhenbolzen an der West-, Nordund Ostwand liegen jeweils fast übereinander. Dadurch konnte die Messung der Höhenunterschiede mittels Firstmessung erfolgen. Dabei wurden jedoch nicht die Höhenunterschiede zwischen den höchsten Punkten der Schlauchwaagenbolzen ermittelt, sondern die Höhenunterschiede zwischen dem höchsten Punkt des unteren Bolzens und des niedrigsten Punktes des oberen Bolzens. Daher musste ich zusätzlich die Durchmesser der Köpfe der oberen Höhenbolzen mit einer Bügelmessschraube bestimmen. Für die Firstmessung wurde das Digitalnivellier auf einem ausfahrbaren Stativ befestigt und dieses auf ca. 3m ausgefahren. Die Bedienung des Instrumentes erfolgte dann von einer Leiter aus. Die Messungen habe ich auch hier gleich im Hinund Rückgang durchgeführt, um eine sofortige Kontrolle der Höhenunterschiede zu erreichen.

Im Anschluss daran konnte die Verbindung zwischen dem Schlauchwaagennetz und dem Hallennetz hergestellt werden. Dies geschah durch Messung mit umgedrehter Nivellierlatte. Bestimmt wurden die Höhenunterschiede zwischen dem tiefsten Punkt des Höhenbolzens und dem tiefsten Punkt einer in die Hallenvermarkung eingesetzten CCR-Kugel. Für die Berechnung des gesuchten Höhenunterschiedes vom höchsten Punkt des Höhenbolzens zum Zentrum der Kugel habe ich auch hier die Durchmesser der Bolzenköpfe mit der Bügelmessschraube gemessen. Der Durchmesser der CCR-Kugel war aus ihrem Kalibrierzertifikat bereits bekannt und konnte übernommen werden. Die Bestimmung des Höhenbolzens SWB-SOO erfolgte durch Messung des Höhenunterschiedes zum Bolzen SWB-SO. Dazu wurde das Nivellier auf das Süd-West-Treppenhaus aufgestellt, da nur dort ein sicherer Stand für die Dauer der Messung gewährleistet werden konnte. Die Handhabung des Digitalnivelliers bereitete keine besonderen Schwierigkeiten. Durch die Möglichkeit der automatischen Ablesung und Speicherung der Messwerte konnten die Messungen sehr schnell durchgeführt werden.

Für das Feinnivellement habe ich 5 Messtage und für die Messung mit der Präzisionsschlauchwaage habe ich 4 Messtage benötigt. Die Messungen mit den beiden Lasertrackern erfolgten an drei Tagen mit jeweils einem halben Tag für die Vorbereitung der Torushalle. Für das Aufräumen der Halle wurde ebenfalls jeweils ein halber Tag gebraucht.

6 Auswertung der Messungen

Im Zuge der Vermessung des Hallennetzes sind sehr viele Messdaten angefallen, die für jedes Instrument separat auszuwerten waren. So musste ich Korrekturen an die Messwerte anbringen sowie mehrfach gemessene Größen mitteln, bevor die Messwerte der Ausgleichung zugeführt werden konnten.

Die Lasertracker-Messwerte werden generell innerhalb der AXYZ-Datenbanken gespeichert. Sie mussten daher für die weitere Bearbeitung standpunktweise ausgelesen werden. Die Weiterverarbeitung fand in Excel statt. Da auf jeder Station die Messung zu den einzelnen Punkten mehrfach erfolgte, wurden die Messungen zunächst gemittelt und auf grobe Fehler überprüft. Die gemittelten Messwerte konnten dann standpunktweise in gesonderten Textdateien gespeichert werden, um die Steuerdatei für die Ausgleichung zu erstellen. Die Auswertung der Lasertrackerdaten befindet sich auf der beiliegenden CD.

Wie bereits erwähnt, traten bei den Messungen mit der Präzisionsschlauchwaage Temperaturdifferenzen zwischen den Messstellen auf. Diese Temperaturdifferenzen bewirkten eine Dichteänderung des Wasser und somit einen systematischen Fehler, da sich die Flüssigkeitssäulen in den Messwertaufnehmern auf unterschiedliche Niveaus einstellten. Daher war es nötig, die ermittelten Höhenunterschiede um den Einfluss der Temperaturunterschiede zu korrigieren. In der Gebrauchsanweisung zur Präzisionsschlauchwaage sind dazu die Dichten des Wassers bei verschiedenen Temperaturen aufgeführt. Für Präzisionsanwendungen reichen diese Angaben allerdings nicht aus, da die Wasserdichten nur für jeweils 1°C Temperaturunterschied angegeben sind. Zur Berechnung der Niveaukorrektur mussten daher Zwischenwerte linear interpoliert werden.

t	Dichte	t	Dichte
[°C]	[g/cm ³]	[°C]	[g/cm ³]
20	0,998204	21	0,997993
20,1	0,998183	21,1	0,997971
20,2	0,998162	21,2	0,997949
20,3	0,998141	21,3	0,997926
20,4	0,998120	21,4	0,997904
20,5	0,998099	21,5	0,997882
20,6	0,998077	21,6	0,997860
20,7	0,998056	21,7	0,997838
20,8	0,998035	21,8	0,997815
20,9	0,998014	21,9	0,997793

Tabelle 8: Dichte von Wasser - Interpolierte Zwischenwerte

Die Temperaturkorrektion berechnet sich aus der Dichte des Wasser bei der Messtemperatur t sowie aus der Länge der aufsteigenden Wassersäule. Zur Berechnung werden die folgenden Formeln angewendet:

$$H = \frac{H_1 + H_2}{2}$$
mit:

$$\Delta \rho = \rho_1 - \rho_2$$
H₁, H₂ beiderseitige Höhen der aufsteigenden

$$\Delta h = H \cdot \frac{\Delta \rho}{\rho_1}$$
p1, p2 Temperaturbedingte Dichten des Wassers

Obwohl die Messanordnungen zum Teil nicht optimal waren, erfolgte die Bestimmung der Höhenunterschiede zwischen den Schlauchwaagenbolzen insgesamt doch mit einer sehr hohen Genauigkeit. Die maximale Abweichung zwischen Hin- und Rückmessung betrug 0,04mm. In der folgenden Tabelle sind die erzielten Messergebnisse aufgeführt:

Ebono	Linie		Höhenunterschiede [mm]					
LDelle	von	nach	1. Messung	2. Messung	Differenz	Mittel		
	SWB-WU	SWB-NU	-9,137	-9,154	-0,017	-9,145		
1	SWB-NU	SWB-OU	13,796	13,810	0,015	13,803		
	SWB-OU	SWB-WU	-4,649	-4,648	0,001	-4,649		
	SWB-SO	SWB-OO	5,092	5,109	0,017	5,100		
	SWB-OO	SWB-NO	3,680	3,640	-0,040	3,660		
2	SWB-NO	SWB-WO	-5,854	-5,891	-0,037	-5,872		
2	SWB-WO	SWB-SO	-2,881	-2,905	-0,025	-2,893		
	SWB-SO	SWB-NO	8,698	8,739	0,041	8,718		
	SWB-WO	SWB-OO	2,181	2,163	-0,019	2,172		

Tabelle 9: Ergebnisse der Messungen mit der Präzisionsschlauchwaage

Die komplette Auswertung der Schlauchwaagenmessungen fand in selbst entworfenen Messformularen statt und kann dem Anhang E entnommen werden.

Die Nivellementsdaten habe ich am Ende eines jeden Messtages aus dem Speicher des DiNi 12T ausgelesen und in separate Dateien gespeichert. Diese Dateien mussten zunächst bereinigt und für die weitere Auswertung vorbereitet werden. Die Auswertung fand in Excel statt. Die Höhenunterschiede zwischen den Netzpunkten (siehe Abbildung 27) konnten direkt ausgewertet werden, während die Verbindungsmessungen im und zum Schlauchwaagennetz zunächst um die jeweiligen Durchmesser der Höhenbolzen korrigiert werden mussten. Die Bestimmung der Höhenunterschiede erfolgte mit einer hohen Genauigkeit. Zwischen der Hin- und Rückmessung war eine maximale Differenz von 0,1mm zugelassen. Diese Forderung konnte lediglich bei zwei Höhenunterschieden nicht eingehalten werden.

Die Auswertung der Nivellements befindet sich auf der beiliegenden CD. Die erreichten Ergebnisse können dem Anhang F entnommen werden.

6.1 Ausgleichung des Hallennetzes

Mit dem Ausgleichungsprogramm Xdesy habe ich die Ausgleichung der Messungen vorgenommen. Die Ausgleichung erfolgte nach der Methode der kleinsten Quadrate. Als Näherungskoordinaten für die Ausgleichung konnten die vorhandenen Koordinaten des Hallennetzes verwendet werden. Die Positionen der Lasertrackerstandpunkte wurden durch Transformation der Messungen in das Ursprungsnetz hinreichend genau berechnet. Xdesy ist als Ausgleichungsprogramm für geodätische Messungen konzipiert. Daher erfolgen die Berechnungen in linkshändigen Koordinatensystemen. Die Koordinaten der Hallennetzpunkte liegen dagegen in einem mathematischen rechtshändigen Koordinatensystem vor. Um die Näherungskoordinaten der Punkte in ein linkshändiges Koordinatensystem zu überführen, mussten die Vorzeichen der Y-Koordinaten geändert werden.

Das Nivellement und die Lasertrackermessungen wurden zunächst separat ausgeglichen, um grobe Fehler aufzudecken sowie die Parameter für das stochastische Modell der Ausgleichung zu bestimmen. Die Erstellung der Steuerdatei für das Nivellementsnetz geschah manuell, da nur wenige Beobachtungen vorlagen. Bei der anschließenden Ausgleichung konnten keine groben Fehler gefunden werden. Bei den Lasertrackermessungen sind wesentlich mehr Messdaten angefallen. Die Steuerdatei habe ich daher mit Hilfe des Xdesy-Tools erzeugt. Bei der Ausgleichung musste festgestellt werden, dass ein Großteil der Horizontalrichtungen und Zenitdistanzen auf der zweiten Station des LTD800 durch das Data-Snooping als grobe Fehler erkannt wurden. Dies lässt den Schluss zu, dass die Messwerte durch die durchgeführte Ausrichtung an der Schwerkraft verfälscht wurden. Daher konnten nur die auf diesem Standpunkt gemessenen Strecken für die Ausgleichung verwendet werden. Nach den Vorarbeiten konnte die Gesamtausgleichung des Hallennetzes mit allen Messdaten durchgeführt werden. Die Ausgleichung erfolgte als freie Ausgleichung. Bei der freien Ausgleichung werden die Koordinaten der Netzpunkte als Unbekannte eingeführt und in der Ausgleichung neu berechnet. Vorteil der freien Ausgleichung ist, dass die innere Netzgeometrie erhalten bleibt und die Koordinaten der Netzpunkte ohne äußeren Zwang berechnet werden. Die Überprüfung der Netzgenauigkeit geschah mit dem Globaltest nach Baarda. Bei diesem Test wird mit einer Irrtumswahrscheinlichkeit α geprüft, ob es einen Widerspruch zwischen der a priori und a posteriori Standardabweichung der Gewichtseinheit gibt. Dazu wird der F-Test zweier Varianzen durchgeführt. Die Testgröße T berechnet sich nach:

$$T = \frac{s^2}{\sigma^2}$$

$$\sigma^2 = \text{Standardabweichung a priori}$$

$$s^2 = \text{Standardabweichung a posteriori}$$

Die Testgröße wird anschließend dem Quantil der Fisherverteilung mit den Freiheitsgraden $f_1 = n - u$ und $f_2 = \alpha$ gegenübergestellt. Ist die Testgröße kleiner als das F-Quantil, so ist der Test anzunehmen und man kann davon ausgehen, dass das Netz den Anforderungen entspricht. Der Globaltest wird vom Ausgleichungsprogramm bei jeder Ausgleichung automatisch durchgeführt und die Ergebnisse werden in der Protokolldatei gespeichert. Bei der durchgeführten Gesamtausgleichung des Hallennetzes wurde der Globaltest angenommen. Neben dem Globaltest wird bei jeder Ausgleichung auch eine Varianzkomponentenschätzung durchgeführt. Dabei erfolgt ein Vergleich der a priori Standardabweichungen der einzelnen Messwertgruppen mit den in der Ausgleichung berechneten Standardabweichungen. Allgemein gilt, dass sich die a posteriori Standardabweichung um 50% von der Standardabweichung a priori unterscheiden darf¹. Die statistische Überprüfung der Standardabweichungen der Messwertgruppen erfolgte wieder mit Hilfe des F-Tests. Bei der Gesamtausgleichung des Hallennetzes zeigte sich, dass die Schätzung a priori Standardabweichungen der gemessenen Höhenunterschiede offensichtlich zu optimistisch erfolgte und dadurch der F-Test abgelehnt wurde. Die Standardabweichungen der Höhenunterschiede mussten daher angepasst und die Ausgleichung solange neu berechnet werden, bis die Varianzkomponentenschätzung die Anforderungen erfüllte. Dabei vergrößerten sich die Standardabweichungen allerdings so stark, dass diese letztendlich nicht mehr den realen Bedingungen entsprachen. Ein Vergleich der berechneten Koordinaten ergab einen maximalen Unterschied von 0,05mm (3D) gegenüber der ursprünglichen Berechnung. Da dieser Unterschied jedoch kleiner ist als die Messgenauigkeit des Lasertrackers, konnte der ursprüngliche Ausgleichungsansatz beibehalten werden. Die Varianzkomponentenschätzung wurde aufgegeben, weil zum einen die Anzahl der gemessenen Höhenunterschiede gegenüber der Anzahl der Lasertracker-Messwerte gering ist und zum anderen der Nutzer keinen Einfluss auf die Gewichtsansätze bei der Berechnung der Varianzkomponentenschätzung für die einzelnen Messwertgruppen hat.

Die aufgestellten Xdesy-Steuerdateien sowie die Protokolldateien der Ausgleichung befinden sich auf der beiliegenden CD.

6.2 Überführung der Koordinaten in das Netzdatum

Als Ergebnis der Ausgleichung wurden die Koordinaten der Netzpunkte sowie deren Standardabweichungen erhalten. Die Berechnung erfolgte allerdings nur näherungsweise im Datum des Hallennetzes. Da jedoch die bei der Urmessung festgelegten Datumsparameter erhalten bleiben sollten, bestand die Aufgabe darin, das neu berechnete Netz in das Datum der Torushalle zu überführen, ohne die Netzgeometrie zu zerstören. Dies konnte ich mit einer Best-Fit-Transformation erreichen. Die Best-Fit-Transformation wurde mit Metrolog, einer Mess- und Analysesoftware für Koordinatenmessmaschinen durchgeführt.

Als Referenz wurden die Koordinaten derjenigen Punkte ausgewählt, die bereits bei der ursprünglichen Vermessung vorhanden waren. Bei der Transformation durften jedoch nicht alle 7 Parameter berechnet werden, um die innere Geometrie des Netzes zu bewahren. Daher wurde der Maßstab auf 1 gesetzt, damit es zu keiner Skalierung des

¹ Literatur [9] Seite 441

Netzes kommt und die Rotationen um die X- und Y-Achsen nicht berechnet, um die Horizontierung des Netzes zwingend zu erhalten.

Best-Fit Aus	srichtung				4	۲×
1	Ref	: WK	51	-		
Ursprungs	: Ausrichtur	ng MKS	S			
Zwingende Rotation	: Ausrichtur	ng MKS	3	•		
□ X: 0.0	00000					
□ Y: 0.0	00000					
▼ Z : -0.0	001 40	Begm	zt			
Translation	1					
▼ X: -0.0	48339	Begma	zt			
▼ Y: -0.0	78810	Begm:	zt			
▼ Z : -0.9	93925	Begm:	zt			
Massstab	000001					
Element:	Richt.	Ge	×	Y	Z	^
- → N103	XYZ	KEINE	10474	-4355	-3254	
- → N104	XYZ	KEINE	10742	-5089	-3461	
	XYZ	KEINE	10836	-7488	-3468	
→ N106	XYZ	KEINE	6494.2	-10311	-3467	~
COC A AND AND A AN						
	Abweichun Quadr. Ab	gs Mitteli w. Mitteli	wert 1.0 wert 1.1	22538	0.4768	72 22
LICENSER BY		135			(SALE)	North State

Abbildung 28: Transformationsergebnis

Das ausgeglichene Netz konnte mit einer mittleren Genauigkeit vom 0,5mm in das ursprüngliche Netz eingepasst werden. Die transformierten Koordinaten sowie deren Standardabweichungen bilden das endgültige Vermessungsergebnis und sind im Anhang G zu finden.

6.3 Berechnung der Punkte O301 und S601

Die Punkte O301 und S601 sind in der Torushalle so angebracht, dass Messungen zu diesen Punkten nicht von jedem Standpunkt aus erfolgen können. Der Punkt O301 kann nur von der Messsäule auf dem nord-östlichen Treppenhaus aus angemessen werden und der Punkt S601 wird in der Regel vom Hallenkran verdeckt. Mit dem Lasertracker konnten diese Punkte aber von zwei bzw. drei Stationen aus gemessen werden. Dabei ergaben sich jedoch sehr ungünstige Schnitte mit sehr spitzen Schnittwinkeln.

In der Vorausgleichung der Lasertrackermessungen wurde festgestellt, dass diese beiden Punkte im Vergleich zu den anderen Netzpunkten eine wesentlich höhere Standardabweichung aufwiesen. Daher sollten die Messungen zu diesen beiden Punkten nicht in die Bestimmung des Gesamtnetzes einfließen. Die Bestimmung der Koordinaten erfolgte letztendlich durch Transformation. Dazu mussten alle berechneten Koordinaten der Hallenpunkte auf den Stationen 52 und 51 aus AXYZ exportiert, in Excel eingelesen und dort gemittelt werden. Anschließend habe ich die gemittelten Koordinaten wieder in AXYZ importiert und die Transformation durchgeführt. Als Referenzkoordinaten kamen die endgültigen Koordinaten des neu berechneten Hallennetzes zum Einsatz.

Coordsys Transformation Solution		Coordsys Transformation Solution	
Coordsys ID: 0301 BESTFIT	Sa <u>v</u> e <u>C</u> lose	Coordsys ID: S601 BESTFIT	Sa <u>v</u> e <u>C</u> lose
Set new Coordinate System as active 🔽 Inherit Scale from active CS 🔽	<< <u>B</u> ack	Set ne <u>w</u> Coordinate System as active 🔽 Inherit Scale from active CS 🗌	<< <u>B</u> ack
Total RMS <u>E</u> rror: 0.134 [mm]	Select ID	Total RMS Error: 0.103 (mm)	Select ID
	Parameters		Parameters
pint Deviations dX dY dZ DEV 🔼		Point Deviations dX dY dZ DEV 🔨	
ferenz/N101 -0.037 0.054 0.028 0.071	Erint	Referenz/N101 -0.093 -0.067 0.215 0.2	Erint
ferenz/N108 0.035 -0.128 -0.057 0.144		Referenz/N102 -0.054 0.052 0.122 0.1	
ferenz/N401 -0.005 -0.031 -0.084 0.089	<u>H</u> eport	Referenz/N104 -0.040 0.051 -0.033 0.0	<u>H</u> eport
Herenz/N404 0.122 -0.180 -0.100 0.240		Referenz/N105 -0.038 0.085 -0.037 0.1	
ferenz/0101 0.074 -0.232 -0.055 0.341	Help	Referenz/N106 -0.013 0.147 -0.045 0.1 Referenz/N107 -0.027 0.029 -0.029 0.0	Help
ferenz/0101 0.374 0.133 0.033 0.168		Beferenz/N108 -0.037 0.035 0.035 0.0	
ferenz/0103 0.074 -0.294 0.059 0.308		Beferenz/N109 -0.116 0.063 0.169 0.2	
ferenz/0104 0.051 -0.259 -0.018 0.264		Referenz/N201 -0.094 -0.006 0.186 0.2	
ferenz/0105 -0.010 -0.231 0.029 0.233		Referenz/N202 -0.071 0.079 -0.023 0.1	
ferenz/0106 -0.044 -0.181 0.023 0.187		Referenz/N203 -0.039 0.101 -0.114 0.1	
ferenz/0107 -0.085 -0.185 0.072 0.216 🞽		Referenz/N204 -0.017 0.085 0.040 0.0 🞽	

Abbildung 29: Berechnung der Punkte O301 und S601 (Transformationsergebnisse)

Bei den Transformationen konnte ein RMS-Wert von 0,134mm für den Punkt O301 sowie ein RMS-Wert von 0,103 für den Punkt S601 erreicht werden. Damit liegen diese beiden Punkte innerhalb der Genauigkeit der übrigen Netzpunkte.

7 Bewertung der Ergebnisse

Um die Qualität der neu berechneten Koordinaten zu untersuchen, habe ich zunächst einen Punktvergleich durchgeführt. Dabei traten gegenüber der Nachmessung von 2006 räumliche Abweichungen von bis zu 1mm auf (siehe Anhang H). Die größten Abweichungen sind insbesondere bei den höher gelegenen, sowie bei den nachträglich installierten Punkten zu finden, was auf Inhomogenitäten im nachgemessenen Netz schließen lässt.

In einer zweiten Untersuchung habe ich die Netzqualität unter realen Messbedingungen geprüft. Dazu konnte auf eine Lasertrackermessung zurückgegriffen werden, die Ende 2007 in der Torushalle stattfand. Bei dieser Messung wurden 17 räumlich gut verteilte Punkte angemessen und deren Koordinaten im sog. Base-Koordinatensystem des Lasertrackers bestimmt. Anschließend erfolgte eine Best-Fit-Transformation der aufgemessenen Punkte in das Hallennetz. Dabei wurden neben dem Transformationssatz auch die Restabweichungen der Punkte nach der Transformation sowie der RMS-Wert der Ausgleichung berechnet. Die Berechnung der Transformation erfolgte zum einen mit den ursprünglichen und zum anderen mit den neu berechneten Koordinaten der Netzpunkte.

Coordsys Transformation Solution	Coordsys Transformation Solution
Coordsys Trafo_alt BESTFIT Save Coordsys [] Trafo_alt BESTFIT	Coordsys Transformation Solution Sage Coordsys []

Abbildung 30: Vergleich der Transformationsergebnisse

Im Vergleich der Transformationsergebnisse lässt sich beim neu berechneten Netz ein kleinerer RMS-Wert für die Transformation feststellen und die Restfehler der gemessenen Punkte fallen kleiner aus. Dieses Ergebnis lässt den Schluss zu, dass das neu berechnete Netz gegenüber dem alten Netz eine höhere innere Genauigkeit aufweist.

Der letzte Test sollte die Horizontierung des neu berechneten Hallennetzes überprüfen. Dazu wurde eine Messung benutzt, die 2007 mit dem Industrietachymeter TDA 5005 in der Torushalle durchgeführt worden war. Die Transformationen erfolgten wieder mit den ursprünglichen und den neu berechneten Koordinaten.

Parameters 🔊	Parameters 🔀
ID: Trafo_theo_alt BESTFIT Close	ID: Trafo_theo_neu BESTFIT Close
Created: Tuesday, May 27, 2008 15:34 Help	Created: Tuesday, May 27. 2008 15:35 Help
Origin Coordinates	Origin Coordinates
X: 1.210 [mm] • Active	X: 1.171 [mm] • Active
Y: 1.700 [mm]	Y: 1.714 [mm] C Base
Z: 758.103 [mm]	Z: 758.078 [mm]
- Rotation Angles	Rotation Angles
Rx: 359.9981 [deg]	Rx: 359.9993 [deg]
Ry: 0.0011 [deg]	Ry: 0.0000 [deg]
Rz: 75.0567 [deg]	Rz: 75.0568 [deg]
Size/Form	Size/Form
Scale: 1.00000000	Scale: 1.00000000

Abbildung 31: Transformationsparameter

Vergleicht man die Transformationsergebnisse miteinander, stellt man fest, dass die Translationsparameter sowie die Rotation um die Z-Achse nahezu identisch sind. Die Rotationen um die X- bzw. Y-Achse unterscheiden sich dagegen. Das ursprüngliche Hallennetz ist gegenüber der Neuberechnung um 0,0012° bzw. 0,0011° um die X- bzw. Y-Achse verkippt. Allein die Verdrehung um die Y-Achse bewirkt auf einer Strecke von 22m, was in etwa der halben Diagonale durch die Torushalle entspricht, einen Höhenunterschied von ca. 0,42mm. Die durch die Rotation um die X- bzw. Y-Achse hervorgerufenen Höhendifferenzen sind bereits im Vergleich der neuen Koordinaten zum Ursprungsnetz aufgefallen.

Beim neu berechneten Netz müssten die Rotationen um die X- bzw. Y-Achse theoretisch null sein. Bei der Transformation wird allerdings eine Rotation von 0,0007° (2,5") um die X-Achse berechnet. Betrachtet man die Erde als eine Kugel mit einem Radius von 3678km lässt sich nach der Bogenformel zwischen zwei Punkten in 44m Entfernung (entspricht der Diagonalen durch die Torushalle) bereits eine Lotabweichung von 2,5" berechnen. Das Nivel20, mit dem die Lasertracker horizontiert wurden, hat eine Genauigkeit von 1". Dadurch ergibt sich für das Hallennetz eine theoretische Unsicherheit in der Horizontierung von:

$$U_{Horizontierung} = \sqrt{U_{Lotabweichung}^2 + U_{Nivel20}^2} = 2,66"$$

Abbildung 32: lokale Lotlinien

Die bei diesem Test berechnete Rotation um die X-Achse liegt innerhalb der theoretischen Unsicherheit der Horizontierung. Dies lässt den Schluss zu, dass das Hallennetz mit der erreichbaren Genauigkeit an der Schwerkraft ausgerichtet ist.

Die durchgeführten Kontrollen bestätigten die Qualität des neu berechneten Hallennetzes. Die Homogenität der Koordinaten ist deutlich besser, da das Netz in einem Zug durchgemessen und ausgeglichen wurde. Die Ausrichtung des Hallennetzes an die Schwerkraft konnte gegenüber dem Ursprungsnetz verbessert werden. Damit wurden die Hauptanforderungen an das Referenznetz in der Torushalle erfüllt.

8 Zusammenfassung und Ausblick

Die hier vorgelegte Diplomarbeit beschreibt die Neuvermessung und Neuberechnung des Referenznetzes in der Torushalle am Fusionsexperiment Wendelstein 7-X in Greifswald. Gegenüber dem ursprünglichen Hallennetz konnte die innere Genauigkeit sowie die Homogenität der Punktkoordinaten nochmals gesteigert werden. Die 3D-Koordinatenunsicherheit der Punkte beträgt nun nach der Ausgleichung im Mittel 0,086mm (RMS). Es wurde ein Netz berechnet, das bestmöglich an der Schwerkraft ausgerichtet ist. Damit ist der Weg für den vorgesehenen Einsatz von Lotstäben zur Übertragung von Koordinaten in das Innere des Plasmagefäßes geebnet.

Durch den von mir entworfenen Nivellieradapter wurde eine Möglichkeit gefunden, Höhen innerhalb der Hallenvermarkungen mittels geometrischen Nivellements zu übertragen. Die Handhabung dieses Adapters in Verbindung mit einer handelsüblichen Präzisionsnivellierlatte erwies sich als sehr einfach. Einziges Manko dieses Verfahrens ist der beschränkte Einsatzbereich, der auf Grund der Instrumentenstandpunkte auf dem Hallenboden auf die untere Ebene der Netzpunkte begrenzt ist.

Das eingerichtete Schlauchwaagen-Höhennetz ist vielseitig einsetzbar. Die Übertragung von Höhen in das Innere des Plasmagefäßes bei der Endmontage auf dem Maschinenfundament kann nun unabhängig jeglicher Sichtlinien mittels Präzisionsschlauchwaage vorgenommen werden. Die dazu notwendigen Adapter zur Aufhängung der Schlauchwaage im Plasmagefäß müssten allerdings noch angefertigt werden. Weiterhin könnten mit Hilfe der Präzisionsschlauchwaage Setzungen des Maschinenfundamentes unter der Last der einzelnen Module oder Kippbewegungen der Torushalle überprüft werden. Die Grundlagen dazu wurden mit dieser Diplomarbeit geschaffen.

Mit dem kostenlosen Ausgleichungsprogramm Xdesy wurde ein Werkzeug erprobt, das geeignet ist, die täglich anfallenden Ausgleichungsprobleme aus den unterschiedlichsten Bereichen des Vermessungswesens zu bearbeiten. Mit der Applikation Xdesy-Tools konnte die Handhabung von Xdesy nochmals optimiert werden.

Zusammenfassend lässt sich sagen, dass das in dieser Diplomarbeit neu vermessene und ausgeglichene Referenznetz den hohen Genauigkeitsansprüchen bei den Montagearbeiten in der Torushalle gerecht wird. Ich bin stolz, dass ich die Chance hatte, an einem einzigartigen Projekt mitzuarbeiten und hoffe, mit dieser Arbeit einen kleinen Beitrag zum Aufbau des Fusionsexperimentes Wendelstein 7-X geleistet zu haben.

Abkürzungsverzeichnis

ADM	Absolut Messender Distanzmesser
ASDEX	Axialsymmetrisches Divertorexperiment
AXYZ CDM	AXYZ Core Data Module
AXYZ LTM	AXYZ Laser Tracker Module
AXYZ MTM	AXYZ Multi Theodolite Module
AXYZ STM	AXYZ Single Theodolite Module
CCD	Charge Coupled Device
CCR	(Air Pass) Corner Cube Reflector
ECRH	Elektronen-Zyklotron-Resonanz-Heizung
FPM	Freiberger Präzisionsmechanik
GUI	Graphical User Interface, englisch für grafische Benutzeroberfläche
IPP	Max-Planck-Institut für Plasmaphysik
ITER	International Thermonuclear Experimental Reactor
JET	Joint European Torus
RMS	Root Mean Square
W 7-X	Fusionsexperiment Wendelstein 7-X

Glossar

Lateraleffektdiode (Positionsempfindlicher Detektor (PSD)): An der lichtempfindlichen Seite der Lateraleffektdiode befinden sich zwei Anoden und an der Rückseite eine gemeinsame Katode. Trifft ein Lichtstrahl auf die Diode, wird ein Fotostrom induziert, der zu den Anoden hin abfließt. Der Gesamtstrom teilt sich auf beide Anoden auf. Aus dem Verhältnis des Stromes an einer Anode zur Differenz der Einzelströme lässt sich die Position des auftreffenden Strahls auf der Diode bestimmen.

Kollimator: Ein Kollimator ist im Prinzip ein auf unendlich fokussiertes Fernrohr, dessen Okular durch eine Lichtquelle ersetzt ist. Die Lichtquelle beleuchtet ein Strichkreuz in der Brennweite des Okulars. Kollimatoren dienen der Darstellung unendlicher Ziele im endlichen Raum. Sie werden u.a. zum Prüfen und Justieren optischer Instrumente eingesetzt.

Abbildungsverzeichnis

Abbildung 1: Einteilung der Geodäsie	7
Abbildung 2: Stellarator WENDELSTEIN 7-X [8]	. 10
Abbildung 3: Vermarkung in der Torushalle	. 13
Abbildung 4: Punktverteilung an der Nordwand (blau = Punkte des Urnetzes)	. 14
Abbildung 5: Punktverteilung an der Ostwand (blau = Punkte des Urnetzes)	. 14
Abbildung 6: Punktverteilung an der Südwand (blau = Punkte des Urnetzes)	. 15
Abbildung 7: Punktverteilung an der Westwand (blau = Punkte des Urnetzes)	.15
Abbildung 8: Datum des Koordinatensystems der Torushalle	.16
Abbildung 9: Messkopf Leica Lasertracker [6]a	. 18
Abbildung 10: Corner-Cube-Reflektor mit Magnethalter	.21
Abbildung 11: T-Cam und T-Probe [6]	. 22
Abbildung 12: Nivel20	22
Abbildung 13: Messprinzip des Nivel20 [6]c a) horizontiert b) geneigt	.23
Abbildung 14: Messwertaufnehmer PSW2	24
Abbildung 15: Höhenbolzen	.25
Abbildung 16: DiNi 12T	27
Abbildung 17: Aufbau des Zeiss Lattencodes nach [1]	.27
Abbildung 18: Überprüfung des DiNi 12T	. 31
Abbildung 19: DiNi 12T in der Helmholtzspule	. 32
Abbildung 20: Übersicht der Justierverfahren für Nivelliere	. 33
Abbildung 21: Lattenkomparator	. 34
Abbildung 22: Prüfvorrichtung für den Lattenfuß und Lage der Kontrollpunkte	.35
Abbildung 23: Ausführen von Xdesy mit Parametern	.41
Abbildung 24: Xdesy-Tools (Xdesy GUI, Anwendungsbeispiel)	.42
Abbildung 25: Xdesy-Tools (File Creator, Anwendungsbeispiel)	.44
Abbildung 26: Nivellieradapter	.48
Abbildung 27: gemessene Höhenunterschiede im Hallennetz	. 52
Abbildung 28: Transformationsergebnis	. 58
Abbildung 29: Berechnung der Punkte O301 und S601	
(Transformationsergebnisse)	. 59
Abbildung 30: Vergleich der Transformationsergebnisse	.60
Abbildung 31: Transformationsparameter	61
Abbildung 32: lokale Lotlinien	. 62

^{*} Soweit nicht anders gekennzeichnet, handelt es sich bei den Abbildungen um eigene Fotos, Screenshots oder Skizzen.

Tabellenverzeichnis

Tabelle 1: Spezifikationen LTD500 und LTD800 (Herstellerangaben)	20
Tabelle 2: Spezifikationen T-Probe (Herstellerangaben)	22
Tabelle 3: Spezifikationen PSW2 (Herstellerangaben)	25
Tabelle 4: Spezifikationen DiNi 12T (Herstellerangaben)	27
Tabelle 5: Ergebnisse der Lasertracker-Überprüfung	29
Tabelle 6: Ergebnisse der Überprüfung des DiNi 12T Nr.: 350 002	32
Tabelle 7: Ergebnisse der Lattenkalibrierung	36
Tabelle 8: Dichte von Wasser - Interpolierte Zwischenwerte	54
Tabelle 9: Ergebnisse der Messungen mit der Präzisionsschlauchwaage	55

Literaturverzeichnis

[1]

Deumlich/Staiger: Instrumentenkunde der Vermessungstechnik 9., völlig neu bearbeitete und erweiterte Auflage – Heidelberg: Wichmann, 2002

[2]

DIN Deutsches Institut für Normung e.V. (Hrsg.): DIN-Taschenbuch 111

Vermessungswesen

5. Auflage, Stand der abgedr. Normen: Februar 1991 – Berlin, Köln: Beuth, 1991

[3]

Freiberger Präzisionsmechanik: Gebrauchsanweisung Präzisions-Schlauchwaage PSW2

[4]

Fröhlich, Hans: Praxisorientierte Ausgleichungsrechnung für Vermessungsingenieure Sankt Augustin: Selbstverlag Fröhlich, 2004

[5]*

Kern, Fredie: Xdesy - Programm zur Ausgleichung geodätischer Netze www.xdesy.de, f.kern@xdesy.de, 2004. – Freeware, Version 1.8

[6]

Leica Geosystems: http://www.leica-geosystems.com/de Produktbeschreibungen

[6]a* LTD500, LTD500_Prospekt_de.pdf (2000)

[6]b* LTD800, en_L3_LT(D)800.pdf (2003)

[6]c* Nivel20, 711118de_NIVEL20.pdf (2000)

[7]

Leica Geosystems: AXYZ Trainingshandbuch für Tracker Version 1.4.0

[8]

Max-Planck-Institut für Plasmaphysik: http://www.ipp.mpg.de/

[9]

Möser/Müller/Schlemmer/Werner (Hrsg.): Handbuch Ingenieurgeodäsie Möser u.a.: Grundlagen

3., völlig neubearbeitete und erweiterte Auflage – Heidelberg: Wichmann, 2000

[10]

Möser/Müller/Schlemmer/Werner (Hrsg.): Handbuch Ingenieurgeodäsie Löffler u.a.: Maschinen- und Anlagenbau

2., völlig neu bearbeitete und erweiterte Auflage – Heidelberg: Wichmann, 2002

[11]*

Riekert, Wolf-Fritz: Eine Dokumentvorlage für Diplomarbeiten und andere wissenschaftliche Arbeiten Hochschule für Bibliotheks- und Informationswesen Stuttgart http://v.hdm-stuttgart.de/~riekert/theses/index.htm (Datum des Zugriffs: 17.01.2008)

[12]

Torge, Wolfgang: Geodäsie

Berlin, New York: Walter de Gruyter, 1975

[13]

Trimble: Bedienungshandbuch DiNi 12, 12T, 22

[14]

Witte/Schmidt: Vermessungskunde und Grundlagen der Statistik für das Bauwesen 5., völlig neu bearbeitete und erweiterte Auflage – Heidelberg: Wichmann, 2004

Stichwortverzeichnis

ADM	19
AXYZ	37
AXYZ CDM	37
AXYZ LTM	38
AXYZ MTM	37
AXYZ STM	37
Dichte des Wassers	53
Digitalnivellier	26
DiNi 12T	26
Einschwingzeit (Berechnung)	50
F-Test	55
Globaltest	55
Hallennetz	12
Hallennetz Datumsfestlegung.	16
Interferometer	17
Kollimator	30, 62
Lasertracker	17
Lateraleffektdiode	23, 62

LTD500	19
LTD800	19
Max-Planck-Institut für Plasmaphys	sik8
Messinstrumente	17
Nivel20	22
Nivellieradapter	48
Präzisionsschlauchwaage	23
PSW2	24
Software	37
T-Cam	21
Temperaturkorrektion	54
Torushalle	12
T-Probe	21
Wendelstein 7-X	10
Xdesy	38
Xdesy Steuerdatei	39
Xdesy Tools	42

Anhang A: Feldüberprüfung der Lasertracker

Überprüfung LTD500

Zwei-Lagen Messung

zulässige Toleranz: ± 0,0012deg* max. Abweichung: - 0,0007deg (korrigiert)

	ID	Unkorrigi erte	Korrigiert e	Unkorrig 🔺 erte Lage		ID	Unkorrigi erte	Korrigiert e	Unkorrig 4 erte Lage
Hz	twoface/1	0.0002	0.0000	88.731					
Vt		-0.0015	-0.0007	90.836*	Hz	twoface/4	0.0005	-0.0001	0.8693
					Vt		-0.0015	-0.0006	90.058(
Hz	twoface/2	0.0001	-0.0002	89.171(0.0040	0.0004	0.0474
Vt		-0.0013	-0.0003	90.472	Vt	twotace/5	-0.0013	-0.0004	116.998
Hz	twoface/3	-0.0004	-0.0001	0.8055	Hz	twoface/6	0.0001	-0.0002	89.1711
Vt		-0.0012	-0.0007	62.884€	Vt		-0.0014	-0.0004	90.472
•				•				1	Þ
1ax. Ab	w.:	0013 C	EG Ak	tualis.	Max. A	bw.:	0013 C	DEG Ak	tualis.
usricht	ung: Cu	urrent		•	Ausrich	itung: Ci	urrent		•

Reflektorstab-Messung

Entfernung < 1m, zulässige Toleranz: ± 0,020mm* max. Abweichung: 0,010mm (korrigiert)

IFM-Distanz

zulässige Toleranz:	± 0,020mm*
max. Abweichung:	- 0,010mm

Erste Station		Zweite Station	<u>Berechnen</u>
default/1 default/2		default/1 default/2	<u>S</u> chliessen
default/3 default/4		default/3 default/4	<u>H</u> ilfe
Ergebnisse	Karita I		
	Korngierc	Differenz:	
Ursprunglich:			 and and a set of the set

72
ADM-Offset

zulässige Toleranz:	± 0,050mm*
max. Abweichung:	- 0,017mm

ID	IFM:	ADM korrigiert	Abweichung	Verw.	ADM Temp	
adm/1	4050.949	4050.966	-0.016	\times	24.0	
adm/2	25607.539	25607.556	-0.017		24.0	100
					27.0	
<u>4</u> ax Abw.:	0.050	[mm] Mittle	re ADM Temp.:		27.242	[[]]
<u>M</u> ax. Abw.: Station Nr.:	0.050	[mm] Mittle	re ADM Temp.: ADM Offset:	6	27.242 81.967	[C] (mm

Überprüfung LTD800

Zwei-Lagen Messung

zulässige Toleranz: ± 0,0012deg* max. Abweichung: - 0,0008deg (korrigiert)

	1	Upcorrect	Corrected	Upcorroe	<u>.</u>		-	Uncorrect	Corrected	Ilpeorree
	ID	ed	Deviations	ed Face			ID	ed	Deviations	ed Face
Hz	twoface/1	-0.0068	0.0003	89.993	-	a da second				
Vt		-0.0006	-0.0005	92.125		Hz	twoface/4	-0.0064	0.0007	-1.4806
						Vt		-0.0004	-0.0008	89.804
Hz	twoface/2	-0.0068	0.0003	89.274:						
Vt		-0.0001	-0.0004	90.206		Hz	twoface/5	-0.0081	0.0008	-1.2496
						vt		-0.0004	-0.0006	117.805
Hz	twoface/3	-0.0059	0.0004	-1.7361		Hz	twoface/6	-0.0067	0.0003	89.274 [.]
Vt		-0.0000	-0.0005	61.441		Vt		-0.0002	-0.0006	90.206
M ax De Alignme	Image: Construction -0.0000 -0.0000 61.4411 Image: Construction Image: Construction Image: Construction Image: Construction Image:									

Reflektorstab-Messung

Entfernung > 3m, zulässige Toleranz: max. Abweichung:

± 0,060mm* 0,020mm (korrigiert)

IFM-Distanz

zulässige Toleranz:	± 0,020mm*
max. Abweichung:	- 0,010mm

Two Point Dista	nce			? 🛛
Select Points First Station 1 default/point1 default/point3 default/point4		Second Station 1 Jefault/point1 default/point2 default/point3 default/point4		<u>S</u> olve Olose
Results Distance Initial 154.367	Corrected 154.361	Difference -0.005	[mm]	

ADM-Offset

zulässige Toleranz:	± 0,050mm*
max. Abweichung:	- 0,009mm

A	OM Distance						2 🗙
Max Deviation -0.009 Ave Deviation -0.008							
	ID	IFM	ADM Corrected	Deviation	Use	ADM Temp	
	adm/1	3337.988	3337.995	-0.007	\boxtimes	26.2	
	adm/2	25744.678	25744.687	-0.009	\bowtie	26.2	
ļ	<u>M</u> ax Dev Warning [0.050 [r	mm]	Ave ADM	[27.954	[C]
	Station Number	v 1		ADM Offset	6	390.465	[mm]
1		Current->No:4	March 11 21 💌	ADM Scale	1.000	000597	
	<u>C</u> lose	S <u>a</u>	ive	<u>G</u> raph	<u>H</u>	elp	

* Leica-Empfehlung

Anhang B: Überprüfung des DiNi12T

\sim	\sim

Hochschule Neubrandenburg Studiengang Vermessungswesen Brodaer Str. 2 17033 Neubrandenburg

Prof. Dr.-Ing. Wilhelm Heger

Seite 1 (3)

Untersuchung eines Kompensatornivelliers

Instrument :	Zeiss DiNi 12T	Datum :	25.03.2008	PrüfNr. :	NK int/08
InstrNr. :	350 002	Prüfer :	DiplIng.(FH) M.Kiskemper		

Arbeitsbereich des Kompensators

n	Neigung [°]	Mittelstellung [°]	Hebung [°]
1	-0,008	-0,281	-0,605
2	-0,008	-0,285	-0,606
3	-0,008	-0,280	-0,607
Mittel	-0,008	-0,282	-0,606
Arbeitsbereic	h Neigung ['] =	16,4	
Arbeitsbereic	h Hebung ['] =	19,4	
Arbeitsbereic	ch gesamt ['] =	35,9	

Einspielfehler und Umkehrfehler des Kompensators

	Neigen des Objektivs										
	1.Abl. [mm]	2.Abl. [mm]	d ["]	<u>a</u> ["]	dd ["]	Mittel M ["]	v ["]	vv ["]			
1	0,011	0,011	0,00	0,02	0,00	2,06	0,00	0,00			
2	0,012	0,012	0,00	0,08	0,01	2,25	0,19	0,04			
3	0,010	0,011	-0,19	-0,11	0,01	1,97	-0,09	0,01			
4	0,010	0,011	-0,19	-0,11	0,01	1,97	-0,09	0,01			
5	0,011	0,011	0,00	0,08	0,01	2,06	0,00	0,00			
Σ / Mittel			-0,08		0,04	2,06	0,00	0,05			

	Heben des Ol	bjektivs						
	1.Abl. [mm]	2.Abl. [mm]	d ["]	<u>م</u> ["]	dd ["]	Mittel M	۷ ["]	vv ["]
1	0,011	0,011	0,00	-0,11	0,01	2,06	-0,02	0,00
2	0,011	0,011	0,00	-0,11	0,01	2,06	-0,02	0,00
3	0,012	0,011	0,19	0,08	0,01	2,16	0,08	0,01
4	0,011	0,010	0,19	0,08	0,01	1,97	-0,11	0,01
5	0,012	0,011	0,19	0,08	0,01	2,16	0,08	0,01
Σ / Mittel			0,11		0,04	2,08	0,00	0,02
Gesamt- summe					0,08			0,08

Standardabweichung der Einstellgenauigkeit des Kollimators = Standardabweichung des Gesamtfehlers =

Kompensatoreinspielfehler = 0,08 "

0,04 "

0,09 "

Kompensatorumkehrfehler =	-0,02 "	Standardabw. =	0,03 "
Der Kompensatorumkehrfehler ist I	pei einem Signifikar	nzniveau von 95% als nicht s	ignifikant
ausgewiesen worden.			

ſĩĨĩ	Hochscl Studienga Brodaer 5 Prof. Dr	hule Ne ang Vermes Str. 2 17 Ing. Will	u b r a n d e n b u r g ssungswesen 7033 Neubrandenburg helm Heger		Seite 2 (3)
Instrument :	Zeiss DiNi 12T	Datum :	25.03.2008	PrüfNr. :	NK int/08
InstrNr. :	350 002	Prüfer :	DiplIng.(FH) M.Kiskemper		

Kompensationsrestfehler (Kompensatorablaufkurve)

Nr.	Stelle des		Kollimatorablesung					
	Arbeitsbereiches [°]	A1 [mm]	A1 ["]	A2 [mm]	A2 ["]	Mittel A1, A2 ["]		
1	-0,038	-0,005	-0,94	-0,004	-0,75	-0,84		
2	-0,076	-0,003	-0,56	-0,003	-0,56	-0,56		
3	-0,115	-0,001	-0,19	-0,001	-0,19	-0,19		
4	-0,153	0,005	0,94	0,004	0,75	0,84		
5	-0,192	0,008	1,50	0,006	1,13	1,31		
6	-0,230	0,008	1,50	0,008	1,50	1,50		
7	-0,269	0,010	1,88	0,010	1,88	1,88		
8	-0,307	0,012	2,25	0,012	2,25	2,25		
9	-0,345	0,016	3,00	0,014	2,63	2,81		
10	-0,384	0,020	3,75	0,020	3,75	3,75		
11	-0,422	0,022	4,13	0,021	3,94	4,03		
12	-0,461	0,021	3,94	0,021	3,94	3,94		
13	-0,499	0,021	3,94	0,023	4,31	4,13		
14	-0,538	0,025	4,69	0,026	4,88	4,78		
15	-0,576	0,029	5,44	0,029	5,44	5,44		

Nr.	Stelle des	Kollimatorablesung						
	Arbeitsbereiches [°]	A1 [mm]	A1 ["]	A2 [mm]	A2 ["]	Mittel A1, A2 ["		
1	-0,576	0,029	5,44	0,027	5,06	5,25		
2	-0,538	0,024	4,50	0,025	4,69	4,59		
3	-0,499	0,023	4,31	0,023	4,31	4,31		
4	-0,461	0,021	3,94	0,021	3,94	3,94		
5	-0,422	0,017	3,19	0,018	3,38	3,28		
6	-0,384	0,016	3,00	0,017	3,19	3,09		
7	-0,345	0,013	2,44	0,012	2,25	2,34		
8	-0,307	0,011	2,06	0,011	2,06	2,06		
9	-0,269	0,010	1,88	0,009	1,69	1,78		
10	-0,230	0,005	0,94	0,005	0,94	0,94		
11	-0,192	0,003	0,56	0,004	0,75	0,66		
12	-0,153	0,001	0,19	0,002	0,38	0,28		
13	-0,115	-0,003	-0,56	-0,003	-0,56	-0,56		
14	-0,076	-0,003	-0,56	-0,003	-0,56	-0,56		
15	-0,038	-0,005	-0,94	-0,006	-1,13	-1,03		

	Н	ochschule I	Neubran	denburg	,					
	St	udiengang Veri	nessungswes	en						
	Br	odaer Str. 2	17033 Neub	randenburg						
	Р	rof. DrIng.	Wilhelm Heg	jer			Seite 1 (3)			
U	Untersuchung des Einflusses magnetischer Gleich- und									
	Wechselfelder auf Präzisions-Kompensatornivelliere									
Instrument	: Zeiss DiNi 12T	Datum :		2	25.03.2008	PrüfNr. :	NM int/08			
InstrNr. :	350 002	Prüfer :		candIng.(Fi	H) S.Müller					
Prüfmittel Messanoro	Prüfmittel : - Helmholtzspule zur Erzeugung homogener magnetischer Felder - Kollimator mit Strichkreuzverstellung (f=1100mm; Hersteller: Möller - Wedel) - Heidenhain Längenmesstaster zur Bestimmung der Strichkreuzposition - Heidenhain Digitalanzeigeeinheit ND720 mit RS-232-Ausgang - PC zur Übernahme der Messdaten von der Digitalanzeigeeinheit - Labornetzteil (0-40V; 0-3A) zur Erzeugung des magnetischen Gleichfeldes - Ringkerntransformator zur Erzeugung des magnetischen Wechselfeldes - Multimeter zur Erfassung des Spulenstromes Messanordnung : 1 : normales Erdmagnetfeld (Helmholtzspule ausgeschaltet) 2 : magnetisches Feld ein (Ausrichtung bei Gleichfeld Objektiv-Okular = N - S) 3 : normales Erdmagnetfeld (Helmholtzspule ausgeschaltet) 4 : magnetisches Feld ein (Ausrichtung bei Gleichfeld Objektiv-Okular = S - N) 5 : normales Erdmagnetfeld (Helmholtzspule ausgeschaltet) 4 : magnetisches Feld ein (Ausrichtung bei Gleichfeld Objektiv-Okular = S - N) 5 : normales Erdmagnetfeld (Helmholtzspule ausgeschaltet) 4 : magnetisches Feld ein (Ausrichtung bei Gleichfeld Objektiv-Okular = S - N) 5 : normales Erdmagnetfeld (Helmholtzspule ausgeschaltet) 4 : magnetisches Feld ein (Ausrichtung bei Gleichfeld Dbjektiv-Okular = S - N) 5 : normales Erdmagnetfeld (Helmholtzspule ausgeschaltet)									
			Me	ssanordnung		e.				
	1. Durchlauf	1	2	3	4	5				
		[mm]	[mm]	[mm]	[mm]	[mm]				
	1	0,005	0,007	0,007	0,007	0,008				
	2	0,007	0,008	0,008	0,008	0,007				
	3	0,007	0,007	0,008	0,008	0,008				
	4	0,007	0,008	0,007	0,008	0,009				
	5	0,009	0,008	0,006	0,007	0,010				
	Mittel [mm]	0.0070	0,0076	0.0072	0.0076	0,0084				
	Mittel ["]	1.31	1.43	1.35	1.43	1.58				
	Stdaby Finzel ["]	0.27	0.10	0.16	0.10	0.21				
	Stdabw Mittel ["]	0,12	0.05	0,10	0.05	0,21				
	Drüfgrößo E	0,12	4.04	0,07	4 20	0,10				
	0.21 8.00	Varianzan di	4,04	Varianzan dir	4,00					
	0,21 8,90	varianzen si		vananzen sin						
1	Pruigroise t		0,95		0,37					
	Quantil = 2,160	Keine signifikant	e ∠iellinienand.	keine signifikante	Ziellinienand.					
Hypothese	Hypothesentest : Wird durch das 10-fache Erdmagnetfeld die Ausrichtung der Ziellinie signifikant verändert? Zunächst wird getestet, ob von der Gleichheit der Varianzen ausgegangen werden kann (F-Test mit $f_1 = 9$; $f_2 = 4$; $\alpha = 5\%$). Ist dies der Fall, kann ein doppelter t-Test durchgeführt werden, um eine Ziellinien- änderung nachzuweisen (mit $f_1 = 13$; $\alpha = 5\%$).									

$\overbrace{1}^{m}\overbrace{1}^{m}$	He Stu Bro Pi	ochschule udiengang Ve odaer Str. 2 rof. DrIng.	Neubrandenburg ermessungswesen 17033 Neubrandenburg Wilhelm Heger		Seite 2 (3)
Instrument : Zeiss D	DiNi 12T	Datum :	25.03.2008	PrüfNr. :	NM int/08
InstrNr.:	350 002	Prüfer :	candIng.(FH) S.Müller		

Tabelle 2: Magnetisches Wechselfeld mit 0,2 mT und 50Hz

		75.	M	essanordnung	1	
2. Durcl	hlauf	1	2	3	4	5
		[mm]	[mm]	[mm]	[mm]	[mm]
1		0,007	0,007	0,009	0,007	0,008
2		0,007	0,009	0,007	0,009	0,008
3		0,007	0,008	0,008	0,007	0,007
4		0,007	0,008	0,007	0,009	0,005
5		0,008	0,008	0,008	0,006	0,005
Mittel [I	mm]	0,0072	0,0080	0,0078	0,0076	0,0066
Mittel	["]	1,35	1,50	1,46	1,43	1,24
Stdabw. E	inzel ["]	0,08	0,13	0,16	0,25	0,28
Stdabw. N	Aittel ["]	0,04	0,06	0,07	0,11	0,13
Prüfgrö	ße F		1,00		0,96	
0,21	8,90	Varianzen sir	nd gleichwertig	Varianzen si	nd gleichwertig	
Prüfgrö	ße t		1,29		0,55	
Quantil =	2,160	keine signifikante	Ziellinienänd.	keine signifikante	e Ziellinienänd.	

Tabelle 3: Magnetisches Gleichfeld mit 0,5 mT

			M	essanordnunç	1	
3. Durcl	hlauf	1	2	3	4	5
		[mm]	[mm]	[mm]	[mm]	[mm]
1		0,007	0,006	0,008	0,009	0,008
2		0,008	0,009	0,008	0,007	0,008
3		0,007	0,007	0,007	0,008	0,006
4		0,009	0,008	0,009	0,009	0,008
5		0,008	0,009	0,008	0,009	0,007
Mittel [I	nm]	0,0078	0,0078	0,0080	0,0084	0,0074
Mittel	["]	1,46	1,46	1,50	1,58	1,39
Stdabw. E	inzel ["]	0,16	0,24	0,13	0,17	0,17
Stdabw. M	littel ["]	0,07	0,11	0,06	0,08	0,08
Prüfgrö	ße F		0,32		0,85	
0,21	8,90	Varianzen sir	nd gleichwertig	Varianzen si	nd gleichwertig	
Prüfgrö	ße t		0,19		1,51	
Quantil =	2,160	keine signifikante	Ziellinienänd.	keine signifikante	e Ziellinienând.	

	Hochschule	Neubrandenbur	g		
	Studiengang Ver	messungswesen	The second second		
	Brodaer Str. 2	17033 Neubrandenburg			
	Prof. DrIng.	Wilhelm Heger			Seite 3 (3)
Instrument : Zeiss L	DiNi 12T Datum :		25.03.2008	PrüfNr. :	NM int/08
InstrNr.:	350 002 Prüfer :	candIng.(FH) S.Müller		
Fra	hniezusamm	enfassung und	Fehlero	renzen	
	50111324341111	iemassung unu	renerg	I CHZCH	
Gesamtergebnis :	Das o.a. Instrument w	urde in drei verschiedenen	Magnetfelde	rn untersucht	1
	Dabei wurden folgend	le Abweichungen da von de	er magnetisch	n unbeeinflus	sten Ziellinie
	festgestellt (reduziert	auf das einfache Magnetfe	ld) :		
		99826 - 1993.225 Hold 1992 (Former De Deles Com	and a carry		20
	Messung	Magnetfeld N - S	Magnetf	eld S - N	
		["]	["]	
	Gleichfeld 0,2 mT	-0,009	0,0	04	
	Wechselfeld 0,2 mT	-0,009	-0,0	008	
	Gleichfeld 0,5 mT	0,001	-0,0	005	
					->
	Es wurde bei 6 der 6 wahrscheinlichkeit v	Messanordnungen durch von 5% erwiesen, dass <u>ke</u>	h statistische <u>in</u> magnetise	e Tests mit e cher Einfluss	iner Irrtums- s vorhanden
	151.				
1.9 - X30/10.15					54 - 1950 - St
Fehlergrenzen :	Die Nivellement Felda mente- lässt eine max abweichung von 0,02	nweisung 2006-2011 -Mag a. Abweichung von 0,1 mm '.	netfeldunters / km zu. Dies	uchung der N entspricht ein	livellierinstru- er Ziellinien-
	In der Anlage 8 zur Ni	vellement Feldanweisung 2	2006-2011 we	erden die Rah	imen-
	Declingungen zur Unter	ersuchung und die Starke d	es Magnettel	des genauer	spezifiziert:
	des Erdmagnetfeld) a	usgesetzt.			lanniensilai
	Bei dem o.g. Nivellier	wird die zulässige Abweich	una nach An	lano 8 dor Ni	vellement-
	Feldanweisung in bei	den Magnetfeldrichtungen	nicht übersch	nritten.	venement.
	Somit erfüllt das o.g	. Nivellier die Forderung	der Nivellem	ent-Feldanw	eisung 2006-
	2011 bezüglich der M	lagnetfelduntersuchung.			
	Die Untersuchung im	Gleichfeld bei 0,5mT wird v	on der Anlag	e 8 zur Nivell	ement-
	Feldanweisung 2006-	2011 nicht gefordert, und w	urde nur des	halb durchge	führt, da
	bisher bei dieser Feld	stärke kalibriert wurde und	somit eine Ve	ergleichsmög	lichkeit
	besteht.				

Anhang C: Kalibrierung der Nivellierlatten

ľì	'n	Studieng Brodaer Prof. Dr	ang Veri Str. 2 rIng.	messungswesen 17033 Neubrandenburg Wilhelm Heger		
		Latte	nfuß	prüfung nach DIN 1871	7	
Latte :	Zeiss	LD12 - 13315	Datum :	25.03.2008	Prüf - Nr :	NL int / 08
Bauart :	Nedo-In	war-Codelatte	Prüfer :	DiplIng.(FH) M. Kiskemper		
Fußgröße :		95 x 50 mm			Seite :	1/2

Nach DIN 18717 ist neben der Bestimmung des mittleren Lattenmeters und des Lattennullpunktfehlers auch die Ebenheit und die Rechtwinkligkeit des Lattenfußes zu prüfen.

Die zulässige Abweichung der Rechtwinkligkeit des Lattenfußes zur Lattenachse beträgt ±5'. Die Überprüfung erfolgt auf einem Horizontalkomparator, in den die Latte in zwei Lagen eingespannt wird. Der Lattenfuß wird mit 6 Messuhren (Genauigkeit s \leq 1µm) angetastet. Die Anordnung der Messuhren in Lage I ist in folgender Skizze dargestellt:

Die Berechnung der Neigungen in Längs- und Querrichtung zur Nivellementsrichtung ergab:

Längsfehler (in Nivellementsrichtung) : Querfehler (quer zur Nivellementsrichtung) : -0,002 mm / 25mm bzw. -0,3 '. 0,000 mm / 60mm bzw. 0,0 '.

Die Messdaten und Berechnungen sind auf Seite 2 dargestellt.

Die festgestellten Neigungen des Lattenfußes liegen innerhalb der Toleranz der DIN 18717.

Die geforderte Ebenheit der Aufsetzfläche nach DIN 18717 beträgt 0,02 mm.

Die punktuellen Abweichungen an den oben definierten Stellen gemessen zur ausgeglichenen Ebene beträgt max. -0,001 mm.

Damit liegen die festgestellten Abweichungen innerhalb der Spezifikationen der DIN 18717.

Die visuelle, vollständige Kontrolle der Ebenheit der Aufsetzfläche wurde mit Hilfe eines Haarlineals durchgeführt.

Die visuelle Beurteilung lieferte folgendes Ergebnis:

Der Lattenfuß ist eben und weist nur geringe Gebrauchsspuren auf.

Die Dosenlibellen wurden auf einer vertikalen Prüfeinrichtung kontrolliert und justiert.

ſĩĩ	'n	H o c h Studieng Brodaer Prof. D	schu lang Ve Str. 2 rIng.	ule Neubrandenburg rmessungswesen 17033 Neubrandenburg Wilhelm Heger		
		Latte	nfuß	Bprüfung nach DIN 1871	17	
Latte :	Zeiss	LD12 - 13315	Datum	: 25.03.2008	Prüf - Nr :	NL int / 08
Bauart :	Nedo-li	nvar-Codelatte	Prüfer	: DiplIng.(FH) M. Kiskemper		
Fußgröße :		95 x 50 mm			Seite :	2/2

Überprüfung der Rechtwinkligkeit der Aufsetzfläche zur Lattenachse

	Lage I Teilung zur Wand	Lage II Teilung zum Raum	L	Q	Mittel = (I+II) / 2	M-I
			I-II	I-II		
Messuhr 1	2,017	2,008	0,009	0,009	2,013	-0,004
Messuhr 2	2,985	2,989	-0,004		2,987	0,002
Messuhr 3	3,026	3,045	-0,019	0,019	3,036	0,010
			II-I	II-I		
Messuhr 4	2,760	2,745	-0,015	-0,015	2,753	-0,007
Messuhr 5	4,193	4,196	0,003		4,195	0,002
Messuhr 6	2,701	2,716	0,015	-0,015	2,709	0,007
Σ			-0,011	-0,002		0,001

Längsfehler :

Querfehler :

$$L = \frac{\sum L}{6} = -0,002 \left[\frac{mm}{25mm} \right] \qquad \qquad Q = \frac{\sum Q}{4} = -0,000 \left[\frac{mm}{60mm} \right]$$

$$\alpha = \arctan\left(\frac{L}{25mm}\right) = -0.3$$
 '

$$\beta = \arctan\left(\frac{Q}{60mm}\right) = 0.0$$
 '

Die zulässige Abweichung der Rechtwinkligkeit zwischen Lattenfuß und Lattenteilung beträgt nach DIN 18717 \pm 5'.

Überprüfung der Ebenheit der Aufsetzfläche mittels Haarlineal

Beurteilung : Der Lattenfuß ist eben und weist nur geringe Gebrauchsspuren auf.

ſĩ	im	Hoch Studieng Brodaer Prof. Dr	schule lang Verme Str. 2 1 rIng. Wi	e Neubrandenburg essungswesen 17033 Neubrandenburg ilhelm Heger		
		Latte	nfußpi	rüfung nach DIN 1871	17	
Latte :	Zeiss LD	13 - 15323	Datum :	25.03.2008	Prüf - Nr :	NL int / 08
Bauart :	Nedo-Inva	r-Codelatte	Prüfer :	DiplIng.(FH) M. Kiskemper	<i>6</i>	
Fußgröße :	9	5 x 50 mm			Seite :	1/2

Nach DIN 18717 ist neben der Bestimmung des mittleren Lattenmeters und des Lattennullpunktfehlers auch die Ebenheit und die Rechtwinkligkeit des Lattenfußes zu prüfen.

Die zulässige Abweichung der Rechtwinkligkeit des Lattenfußes zur Lattenachse beträgt ±5'. Die Überprüfung erfolgt auf einem Horizontalkomparator, in den die Latte in zwei Lagen eingespannt wird. Der Lattenfuß wird mit 6 Messuhren (Genauigkeit s \leq 1µm) angetastet. Die Anordnung der Messuhren in Lage I ist in folgender Skizze dargestellt:

Die Berechnung der Neigungen in Längs- und Querrichtung zur Nivellementsrichtung ergab:

Längsfehler (in Nivellementsrichtung) : Querfehler (quer zur Nivellementsrichtung) : 0,005 mm / 25mm bzw. 0,7 '. 0,000 mm / 60mm bzw. 0,0 '.

Die Messdaten und Berechnungen sind auf Seite 2 dargestellt.

Die festgestellten Neigungen des Lattenfußes liegen innerhalb der Toleranz der DIN 18717.

Die geforderte Ebenheit der Aufsetzfläche nach DIN 18717 beträgt 0,02 mm.

Die punktuellen Abweichungen an den oben definierten Stellen gemessen zur ausgeglichenen Ebene beträgt max. 0,002 mm.

Damit liegen die festgestellten Abweichungen innerhalb der Spezifikationen der DIN 18717.

Die visuelle, vollständige Kontrolle der Ebenheit der Aufsetzfläche wurde mit Hilfe eines Haarlineals durchgeführt.

Die visuelle Beurteilung lieferte folgendes Ergebnis:

Der Lattenfuß ist eben und weist nur geringe Gebrauchsspuren auf.

Die Dosenlibelle wurde auf einer vertikalen Prüfeinrichtung kontrolliert und justiert.

ſĩĩ	m	H o c h Studieng Brodaer Prof. D	schu jang Veri Str. 2 rIng.	le Neubrandenburg messungswesen 17033 Neubrandenburg Wilhelm Heger		
		Latte	nfuß	prüfung nach DIN 1871	17	
Latte :	Zeiss	LD13 - 15323	Datum :	25.03.2008	Prüf - Nr :	NL int / 08
Bauart :	Nedo-In	war-Codelatte	Prüfer :	DiplIng.(FH) M. Kiskemper	ő	
Fußgröße :		95 x 50 mm			Seite :	2/2

Überprüfung der Rechtwinkligkeit der Aufsetzfläche zur Lattenachse

	Lage I Teilung zur Wand	Lage II Teilung zum Raum	L	Q	Mittel = (I+II) / 2	M-I
			I-II	I-II		
Messuhr 1	2,012	2,036	-0,024	-0,024	2,024	0,012
Messuhr 2	2,993	2,995	-0,002		2,994	0,001
Messuhr 3	3.040	3.023	0.017	II-I -0.017	3.032	-0.008
Nicoodin o	0,040	0,020	II-I	II-I	0,002	-0,000
Messuhr 4	2,743	2,776	0,033	0,033	2,760	0,017
Messuhr 5	4,199	4,212	0,013		4,206	0,006
Messuhr 6	2,715	2,708	-0,007	0,007	2,712	-0,003
Σ			0,030	-0,001		0,004

Längsfehler :

Querfehler :

$$L = \frac{\sum L}{6} = 0,005 \left[\frac{mm}{25mm} \right] \qquad \qquad Q = \frac{\sum Q}{4} = 0,000 \left[\frac{mm}{60mm} \right]$$

$$\alpha = \arctan\left(\frac{L}{25mm}\right) = 0.7$$

$$\beta = \arctan\left(\frac{Q}{60mm}\right) = 0.0$$
 '

Die zulässige Abweichung der Rechtwinkligkeit zwischen Lattenfuß und Lattenteilung beträgt nach DIN 18717 \pm 5'.

Überprüfung der Ebenheit der Aufsetzfläche mittels Haarlineal

Beurteilung : Der Lattenfuß ist eben und weist nur geringe Gebrauchsspuren auf.

Anhang D: Messungsplanung der Lasertracker-Messung

AI 7																																																					10	22	100	00	94	95	96	37	
AI 6																																																					Al-Messun	Al-Messun	Al-Mecun	AI-INESSUIT	AI-Messun	AI-Messun	AI-Messuni	AI-Messun	
AI 5					4) - 1					hestimmen																																														
AI 4	aufaeaeben														hhar - snäter																																														
AI 3															nicht arraic																																							r Hochpunkt	-Maccinne	abunssaw-w					
AI 2																														4																				111			nt	usgesteckte	ainzelnen A	A nanazina a					
AI 1																																																					CCR desar	dauerhaft a	CCB für die						
Punkt	S101	S102	S103	S104	S105	S106	S201	S202	S203	S204	S205	S301	S302	S303	S304	Sans	CADI	1040	S402	S403	S601	S602	S603	W101	W102	W102	NI TO A	W104	W105	W106	W107	W108	W109	W110	W201	CUCIM	20201	W203	W204	W205	W301	W401	W402	W403	MANA	VATOR NATOR	C0444	INGAN	W502	M203			43	- 22	24	21					
										÷ •											0									5								- 11								1.0															
AI 7																														×.																															
AI6 AI7																																																													
AI5 AI6 AI7																																																				uell messen !									
AI4 AI5 AI6 AI7																																										aufgegeben !									aufgegeben !	hbar - individuell messen !									
AI3 AI4 AI5 AI6 AI7																																										aufgegeben !									aufgegeben !	chwer erreichbar - individuell messen !									
AI2 AI3 AI4 AI5 AI6 AI7																																										aufgegeben !									aufgegeben !	schwer erreichbar - individuell messen !									
AI1 AI2 AI3 AI4 AI5 AI6 AI7																																										aufgegeben i									aufgegeben !	schwer erreichbar - individuell messen !									

Anhang E: Auswertung der Schlauchwaagenmessung

1. Messung

Seite:2		Zeit Bemerkungen		12 13	11:00 Tag:	08.04.2008	Ort:	Torushalle	11:05 IPP-HGW	11:16 Beobachter:	S. Müller	O. Kobs		11:19	09:10 Instr. A:	148888	Instr. B:	148888	09:13	09:45 1. Messung				09:50	14:12			14:17	14:35			14:40	
	2 Δh	/		11	/		10,183	_		/	/	5,092	/				7,360	/	_	/	/	3,680	/	/	/	-11 707	/			_	-5,854	/	
	ьт – <u>–</u> Др	$n = n \frac{p(n)}{p(n)}$	∆h = d^ + kt	10	0.005	0,000		5,066		010	010'0-		5,117	3	0000	950,0-		3,694		1000	0,031		3,666		-0,225		-5.946		0000	0,000	C 760	701'0-	
waage	H (n)	H (n+1)	H = 1/2 * (H(n)+H(n+1))	6	027	110	780	200	775	770		002	/80	775	002	180	RED	~~~	815	780	100	850	000	815	4980		4980	4980	0007	4980	4980	4980	and the second se
r Schlauch	p (n)	p (n+1)	Δp = p(n) - p(n+1)	8	0107000	0,337,343	0 007004	100 000 0	0,000045	0.007006	0701000	0102000	0,997949	-0,000023	0102000	0,997,949	0 007003	000 000'0	-0,000044	0 007071	0,00101	0 007860	0,001,000	0,000111	0,997815		0,997860	-0,000045	00000000	0,99/838	0,997838	0.000000	THE REAL PROPERTY IN THE PROPERTY INTERPROPERTY INTERPROPERT
n mit de	Temp.	T (n)	T (n+1)	7	c to	2,12	21.4	t. 17	[°C]	01.0	0,12	5	2,12	ြှ	5	Z, IZ	010	2,12	[°C]	54.4	51,12	91 G	2,12	[°C]	21,8		21,6	ပ္ရ		1,12	21,7	ŝ	1 1
ssunge	Mittel		d^ [mm]	6			5,031					5,135					3,730					3,575				-5 721					-5,762		
Me	Differenz	d = (n+1) - n	[mm]	5	5,032	5,029	5,029	5,036	5,031	5,134	5,136	5,134	5,136	5,135	3,729	3,730	3,730	3,731	3,729	3,578	3,575	3,574	3,575	3,575	-5,720	-5,720	-5 722	-5,723	-5.760	-5,764	-5,763	-5.760	000000
	Ab-	lesung	-+1 [m]	4	42,564	42,563	42,564	42,566	42,564	42,258	42,259	42,258	42,259	42,258	42,137	42,134	42,133	42,135	42,134	42,123	42,124	42,122	42,122	42,121	87,919	87 010	87 918	87,917	91.728	91,725	91,727	91.728	
		Bolzen	n+1			CIVID	ave 000	2			CIVID	a co	3				a CN	2			CIVID		2			SWB	0M			CMD	0M		1
		System		e e			в					۷					в					۷				ш	1				A		1
	Ab-	lesung	c [5	37,532	37,534	37,535	37,530	37,533	37,124	37,123	37,124	37,123	37,123	38,408	38,404	38,403	38,404	38,405	38,545	38,549	38,548	38,547	38,546	93,639	93,04U 03 630	93,640	93,640	97,488	97,489	97,490	97,488	
eifswald		Bolzen	c			CIMD	SOB	}			CIMD	aws.) Do				awe 000)			CMD)			SWB	ON N			CMD	NON		1
IPP-Gr		System			A Score							в					٩					в				٩	2				в		

...Torushalle.....

Anhang E: Auswertung der Schlauchwaagenmessung

90

Seite:3		Bemerkungen		13	2:35 Tag: 08.04:2008 Ort: Torushalle					Beobachter:	S. Müller	O. Kobs			Instr. A:	148888	Instr. B:	148888		1. Messung														it der Schlauchwaage
		Zeit		12	12:35				12:41	13:05				13:10	10:45				10:50	10:05				10:11	15:10				15:15	15:35			15.41	
	\langle		Δh	E			/	<	/			-2,881				/	/	/				8,698			V	/	/	/				2,181		Mac
	2 Δh		\backslash				-5,762				-	-	<				17,396					/		/			4,363				-		/	
	tt – н <u>Ф</u>	(u) d (u)	$\Delta h = d^{\Lambda} + kt$	10	0 100	-0,100	0.00025	-2,861	N MANUAL	70.07	0,051		-2,900	2		601,0-		8,619		0 DEA	+co'o		8,777		0 225	2		2,159			2000		2,204	
waage	H (n)	H (n+1)	H = 1/2 * (H(n)+H(n+1))	6	1001	1000	770		1215	1660	0001		0//	1215	or t	0//	OLO	068	810	770	0/7	RED		810	AGRI	2000	1080	1200	4980	AGRI	2007t	4980	AQRO	DOOT.
r Schlauch	p (n)	p (n+1)	Δp = o(n) - o(n+1)	8	0.00700.0	0,337304	0 997993		-0,000089	0 007003	00010000		0,997971	0,000022	110100 0	0,99/815	0102000	0,99/949	-0,000134	0 007071	0,991911	0 007004	0,000	0,000067	0 007860	200 100 10	0 007815	0,000,0	0,000045	0 997940	200	0.997949		000000
n mit de	Temp.	T (n)	T (n+1)	7	r to	Z1,4	21.0	2	[°C]	010	0,12		21,1	[°]	2	8,12	0.00	2,12	[°C]	51.1	1,12	01.4	L	[°C]	21 G	2	91 B	2,12	[°C]	01.0	1.1	21.2	ŝ	5
ssunge	Mittel	2	^b [mm]	6		-2,753 21,					1000	-2,927					8,728					8,722					1,934					2,204		
Me	Differenz	d = (n+1) - n	[mm]	5	-2,754	-2,752	-2,754	-2,752	-2,753	-2,927	-2,926	-2.927	-2.927	-2,929	8.726	8,725	8,730	8,729	8,729	8,725	8,721	8,721	8,723	8,722	1,936	1,934	1,933	1,935	1,933	2,201	2,203	2,206	2,204	2011
	Ab-	lesung	n+1 [mm]	4	38,671	38,670	38,670	38,671	38,671	41,509	41,511	41.510	41.510	41,509	44.242	44,241	44,242	44,242	44,242	44,342	44,339	44,338	44,338	44,339	696'66	99,967	99,965	99,969	996,966	100,474	100,474	100,478	100,478 100 478	211 1221
		Bolzen	n+1			CIAID	SO				CIVID	awc	2 2 2				aws	<u>P</u>			CIAID)			SWB	20)			SWB	00		
	0	System		en la		о оо ш						A					в					۷				1	в					۷		1
	Ab-	lesung	c [2	41,425	41,422	41,424	41,423	41,424	44,436	44,437	44.437	44.437	44,438	35.516	35,516	35,512	35,513	35,513	35,617	35,618	35,617	35,615	35,617	98,033	98,033	98,032	98,034	98,033	98,273	98,271	98,272	98,274 98,273	21100
eifswald		Bolzen	c			SWB 41 8WD 41 WO 41 41					CIVID	SWB	D A			CIAID	aws o	200	0		CIAID	ave Solo)			SWB	NON	:			SWB	non No		
IPP-Gr		System			A							в	6				٩					в				2	A					в		

...Torushalle.....

	Ab- lesung n 2 (mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	A B A B 3	Bolzen n+1 NU SWB NU NU NU NU SWB SWB SWB SWB SWB SWB SWB SWB	Ab- lesung n+1 [mm] 4 60,467 60,467 60,467 60,467 60,467 60,467 60,451 60,451 60,452 60,448 60,445 72,293 72,293 72,293 72,292 72,293 72,293 72,293 72,292 72,292 72,293 72,293 72,293 72,293 72,293 72,293 72,293 72,293 72,293 72,293 72,293 72,203 72,077 72,077 72,077 72,077	Differenz d = (n+1) - n [mm] 5 -9,130 -9,132 -9,132 -9,132 -9,132 -9,132 -9,132 -9,132 -9,132 -9,133 -9,133 -9,213 -9,221 -9,228 13,9555 13,9555 13,9555 13,9555 13,9555 13,9555 13,9555 13,95555 13,9555555 13,9555555555555555555555555555555555555	Mittel d^ 6 6 -9,132 -9,220 13,952 13,952	Temp. T (n) T (n+1) 7 20,9 20,8 [°C] [°C] [°C] 20,7 20,7 20,9 21,4 21,4 21,4 21,4 20,8 20,8	$\begin{array}{c} \rho \left(n \right) \\ \rho \left(n + 1 \right) \\ \rho \left(n + 1 \right) \\ \rho \left(n + 1 \right) \\ \Delta \rho = \\ \rho \left(n \right) - \rho \left(n + 1 \right) \\ B \\ 0,998035 \\ -0,000021 \\ 0,998035 \\ 0,997904 \\ 0,997903 \\ 0,997903 \\ 0,997903 \\ 0,998035 \\ 0,$	H (n) H (n+1) H $(n+1)$ H $= 1/2^{*}$ (H(n)+H(n+1)) 9 2070 2075 2073 2075 2075 2075 2075 2075 2075 2075 2075	$kt = H \frac{\Delta \rho}{\rho(n)}$ $\Delta h = d^{\Lambda} + kt$ 10 $-0,044$ $-9,175$ $-9,133$ $-9,133$ $-9,133$ $-9,133$ $-0,087$ $0,087$ $0,087$	2 Δh Δh 11 11 -18,308 -9,154 27,621 13,810	Zeit 12 08:15 08:00 08:40 08:45 08:45	Sette:4 Bemerkungen 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14
പവ	8,312 8.313		>	72,078	13,766		۲, ۲ [°C]	0.000042	2073	13,853		08:30	
	58,312 58,312 58,311 58,312 58,313	A	SWB OU	72,080 72,078 72,077 72,078 72,078	13,768 13,766 13,766 13,765	13,766	20,8 21,0	0,998035 0,997993	2075 2070 2073	0,087 13,853	13,810	08:27	e. Messung
	68,118 68,117 68,117 68,117 68,117 68,118	ш	SWB WU	63,542 63,541 63,540 63,542 63,543	-4,576 -4,576 -4,575 -4,575	-4,576	21,1 21,0 [°C]	0,997971 0,997993	2050 2040 2045	-0,045 -4,621	-9,296	09:20 09:25	
	68,015 68,014 68,016 68,015 68,015	A	SWB WU	63,295 63,294 63,295 63,294 63,294	-4,720 -4,720 -4,721 -4,721	-4,720	21,0 21,1 1°Cl	0,997993 0,997971	2050 2040 2045	0,045 -4,675	-4,648	00:00	

2. Messung

Messungen mit der Schlauchwaage

Seite:5		3emerkungen			13	<u>.</u>	.04.2008	tt	rushalle	WDH-0	obachter:	Müller	Kobs			tr. A:	148888	ttr. B:	148888			Messung													er Schlauchwaage
		Zeit			12	14:18 Ta	10	ō	To	14:23 IPI	14:06 Be	S.	Ö		14:10	12:55 Ins		Ins		13:01	12:51	N			12:48	13:52				13:55	13:32			13.37	ungen mit d
			Δh	[mm]	11		<	<	<hr/>				5,109				/	/	/			10000	3,640				<	<	<				-5,891		Mess
	2							10,218					~	/	/			7,280					/	/	/			18/,11-				\		/	
	и – н <u>ФР</u>	M = 11 p(n)	∆h = d^ + kt		10	0.033	0,000	And the second second	5,089	A MOUNT OF A	0000	0,000		5,128		0000	0,000		3,678		0.010	-0,013		3,602		-0.104			-5,835		-0 104	1010	00 L	04A	
vaage	H (n)	H (n+1)	H = 1/2 *	(H(n)+H(n+1))	6	785	201	800		793	785	2021	000	000	793	000	gUU	0001	1000	900	BUD	000	1000	0001	900	4960		4960	0000	4960	4960	popt	4960	4960	2001
r Schlauchv	p (n)	p (n+1)	Δp =	p(n) - p(n+1) (8	0 008035	0,000,0	0 997993	200.0010	0,000042	0 997993	000 000 0	0002000	0,99/993	0,000000	0002000	0,997,993	00000000	0,997993	0,000000	0 008014	0,330014	0 008035	000000	-0,000021	0.998035		0 998056	000000	-0,000021	0 008014	100000	0,998035	-0 00001	1000010
n mit de	Temp.	T (n)	T (n+1)		7	8 00	50,02	21.0	2	[°C]	21.0	2,12	0.50	21'N	[°]	4	Z1,U		21,0	[°C]	0.00	50,3	8 00	2,07	[°C]	20.8		20.7		[°C]	0.00	2,02	20,8	ŝ	
ssunge	Mittel	2	Š	[mm]	6	5,056 21,							5,128				1000	3,678					3,621				101 1	-5,/31					-5,842		
Me	Differenz	d = b	III - (1 +11)	[mm]	5	5,056	5,055	5,054	5,058	5,056	5,130	5,130	5,128	5,129	5,125	3,680	3,678	3.675	3,678	3,678	3,621	3,623	3,621	3,621	3,619	-5,730	-5,732	-5,732	-5,730	-5,730	-5,838	-5,842	-5,844	-5,843	
	-db-	lesung	т+1	[mm]	4	23,802	23,799	23,798	23,801	23,802	23,678	23,677	23,676	23,677	23,676	22,862	22,861	22.859	22,862	22,863	23,503	23,504	23,503	23,502	23,502	85,948	85,946	85,946	85,947	85,947	86,538	86,537	86,535	86,536 86,537	
		Bolzen	n+1				CMB	00				CIVID		3			CIVID	ave	Dz			CIVID		2			SWB	MO	2			SWB	MON		1
		System			3	о с в							۷					в					۷				ſ	n					A		1
	Ab-	lesung	c	[mm]	2	18,746	18,744	18,744	18,743	18,746	18,548	18,547	18,548	18,548	18,551	19,182	19,183	19.184	19,184	19,185	19,882	19,881	19,882	19,881	19,883	91,678	91,678	91,678	91,677	91,677	92,376	92,379	92,379	92,379 92,378	
eifswald		Bolzen	Ē				CMB	sos				CIVID		2			CIVID	ave	3	0		CIVID)			SWB -	NO	2			SWB	No		
IPP-Gre		System		A							В					A					в					A					в				

...Torushalle.....

Seite:6		Bemerkungen	12 13 3:35 Tag: 10.04.2008 Ort: Tourshalle						Seobachter:	S. Müller	O. Kobs			nstr. A: 148888	nstr. B: 148888		Manan	z. Messung										it dar Schlauchwaada
		Zeit		12	09:35			09:40	09:20			00.00	03:23	08:25	-	08:30	08:05			08:10	15:35		16-40	04.01	16:10			16:15
		. :	Δh [mm]			/	<		_	ł	-2,905							8,739				/				2,163		Mas
	2 Δh			11			-5,811		`	/		_			17,478		/		_			4,326		-	\			
	и – н <u>Ф</u>	(u)d	∆h = d^ + kt	10	0 106	-0,100	0000	00017-	700.0-	120,0-		-2,951		-0,038	8,737		0,019		8,741		-0,437	100000	1,840	Ι	0,442		2,486	λ
waage	H (n)	H (n+1)	H = 1/2 * (H(n)+H(n+1))	6	1600	1000	785	1193	1600	0001	785	1100	1193	785	1000	893	785		1000	893	4960	4960	1000	4300	4960	4000	4900	4960
er Schlauch	p (n)	p (n+1)	$\Delta \rho = \rho(n) - \rho(n+1)$	8		0,33/304	0,997993	-0,000089	200700 0	0,991920	0 997949		-0,000023	1/6/66'0	0,998014	-0,000043	0,998014		0,997993	0,000021	0,997838	0 997926		00000000	0,997971	0002000	U,337,862	0,000089
n mit de	Temp.	T (n)	T (n+1)	7	K FC	21,4	21,0	[°C]	01.0	5,12	91.9		2	21,1	20,9	[°C]	20,9		21,0	[°C]	21,7	21.3		5	21,1	u zo	C,12	ိ
ssunge	Mittel T d^ [mm] T 6						-2,753				-2,924				8,776			8,722				2,277				2,043		
Me	Differenz	d = (n+1) - n	[mm]	5	-2,756	-2,753	-2,752	-2,754	-2,922	-2,923	-2,925	-2,923	C76'7-	8,775 8,776	8,777 8.774	8,777	8,722	8,721	8,722	8,723	2,277 2,276	2,276	2,279	2,210	2,042	2,045	2,044	2,042
	Ab-	lesung	n+1 [mm]	4	20,268	20,269	20,269	20,268	21,902	21,903	21,902	21,903	21,302	25,852 25,853	25,854 25,852	25,853	25,898	25,898	25,897	25,898	77,109	77,108	77,110	11,110	68,964 68,965	68,965	68,967	68,965
		SSWB 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						CIMD	SOB	}			No			SWB	D2		CMD		;	T		SWB	3			
	System B			3			в				٨				в			٨				в		t		A		1
	Ab-	lesung	u [mm]	2	23,024	23,022	23,021	23,022	24,824	24,826	24,827	24,826	24,821	17,077 17,077	17,077 17.078	17,076	17,176	17.177	17,175	17,175	74,832 74,833	74,832	74,831	14,002	66,922 66,921	66,920	66,923	66,923
alle		Bolzen	c.			CIVID	No			CIVID	A OW				SON -			SWB	Ds N			OM				SWB-		
Torusha	System B						A				в				۷			В				۷				В		

Anhang E: Auswertung der Schlauchwaagenmessung

Anhang F: Ergebnisse des geometrischen Nivellements

Feinnive	ellement	über	die	Punkte	e des	Hal	lennet	izes

Nr	Höhenun	terschied	Hin	Rück	Differenz	Mittel	dH
1.11	von	nach		Ruck	Dilicicitz	WIIIICI	[mm]
1	S104	W104	-0,02512	0,02518	0,00006	-0,02515	-25,15
2	S104	W103	-0,01183	0,01182	-0,00001	-0,01182	-11,82
3	S104	W105	-0,01493	0,01494	0,00001	-0,01494	-14,94
4	W105	W106	-0,02012	0,02005	-0,00007	-0,02008	-20,08
5	S102	S103	-0,01515	0,01515	0,00000	-0,01515	-15,15
6	S103	S104	0,01755	-0,01752	0,00003	0,01753	17,53
7	S104	S105	0,18295	-0,18303	-0,00007	0,18299	182,99
8	S105	W102	-0,18529	0,18534	0,00005	-0,18532	-185,32
9	W102	W103	-0,00972	0,00967	-0,00004	-0,00970	-9,70
10	S102	N101	0,00052	-0,00046	0,00005	0,00049	0,49
11	S103	N101	0,01544	-0,01552	-0,00008	0,01548	15,48
12	N103	W105	-0,21795	0,21796	0,00001	-0,21795	-217,95
13	W106	N103	0,23769	-0,23758	0,00012	0,23763	237,63
14	N108	O101	-0,20035	0,20039	0,00003	-0,20037	-200,37
15	O101	N107	0,00200	-0,00196	0,00003	0,00198	1,98
16	N106	N107	-0,00244	0,00237	-0,00007	-0,00240	-2,40
17	N103	N105	-0,20349	0,20340	-0,00009	-0,20344	-203,44
18	N105	N106	0,00093	-0,00100	-0,00007	0,00097	0,97
19	O105	O106	0,64251	-0,64240	0,00011	0,64245	642,45
20	N106	O105	0,00053	-0,00052	0,00001	0,00053	0,53
21	N106	O107	-0,00930	0,00929	-0,00001	-0,00929	-9,29
22	O108	O107	-0,65511	0,65512	0,00001	-0,65511	-655,11
23	O107	O106	0,65243	-0,65240	0,00002	0,65241	652,41
24	O109	O108	0,65919	-0,65925	-0,00006	0,65922	659,22
25	S102	O109	-0,01037	0,01036	-0,00002	-0,01036	-10,36
26	N101	W106	-0,03266	0,03267	0,00001	-0,03266	-32,66
27	N103	N101	-0,20477	0,20471	-0,00006	-0,20474	-204,74
28	W105	W104	-0,00994	0,00987	-0,00008	-0,00991	-9,91
29	W103	W104	-0,01302	0,01304	0,00001	-0,01303	-13,03
30	N103	S102	-0,20561	0,20559	-0,00002	-0,20560	-205,60
31	N107	S103	-0,01562	0,01562	-0,00001	-0,01562	-15,62
32	N108	S102	-0,19866	0,19866	0,00001	-0,19866	-198,66
33	W105	N108	0,21125	-0,21119	0,00006	0,21122	211,22
34	O109	N101	0,01105	-0,01103	0,00002	0,01104	11,04
35	O109	W106	-0,02155	0,02154	-0,00001	-0,02154	-21,54
36	O107	N103	0,21200	-0,21199	0,00001	0,21199	211,99
37	S103	O107	0,00876	-0,00871	0,00005	0,00873	8.73
38	W104	O109	0,01177	-0,01178	-0,00001	0,01177	11,77
39	W104	O105	0,02571	-0,02572	-0,00001	0,02571	25,71
40	W106	S102	0,03223	-0,03216	0,00007	0,03219	32.19
·							

Nr	Höhenunterschied		Hin	Pück	Differenz	Mittel
	von nach		1 1111	NUCK	Differenz	[mm]
1	SWB-WU	W106	-26,88	26,95	0,06	-26,91
2	SWB-OU	O109	-29,44	29,46	0,02	-29,45
3	SWB-NU	N107	-4,72	4,67	-0,05	-4,69
4	SWB-WU	SWB-WO	2958,17	-2958,19	-0,02	2958,18
5	SWB-OU	SWB-OO	2955,70	-2955,70	0,01	2955,70
6	SWB-NU	SWB-NO	2973,20	-2973,21	-0,01	2973,20
7	SWB-SOO	SWB-SO	-498,85	498,86	0,01	-498,86

Verbindungsmessungen im und zum Schlauchwaagennetz

Anhang G: Endgültige Koordinaten des neu berechneten Hallennetzes

Punkt ID	X	Y	Z	σΧ	σY	σZ	σ3D
N101	19491,235	4477,077	-3459,872	0,017	0,026	0,056	0,063
N102	19508,690	4497,272	-1919,857	0,025	0,035	0,088	0,098
N103	10473,962	-4355,283	-3255,054	0,020	0,023	0,045	0,054
N104	10741,840	-5089,698	-3461,808	0,027	0,030	0,080	0,089
N105	10835,456	-7488,764	-3458,962	0,019	0,025	0,071	0,077
N106	8769,936	-10311,738	-3457,348	0,019	0,030	0,100	0,106
N107	6494,046	-13454,635	-3459,978	0,030	0,054	0,068	0,092
N108	3085,793	-14046,878	-3262,127	0,021	0,012	0,050	0,056
N109	707,890	-17324,535	-3458,831	0,038	0,015	0,099	0,107
N201	18679,430	3370,455	-546,218	0,017	0,031	0,078	0,085
N202	11374,535	-6742,955	-466,452	0,020	0,018	0,055	0,062
N203	7471,552	-12086,935	-456,219	0,024	0,016	0,065	0,071
N204	1713,422	-15943,055	-467,941	0,043	0,018	0,105	0,114
N301	4877,196	-15659,350	3337,851	0,033	0,024	0,079	0,089
N401	18688,812	3371,137	6745,560	0,026	0,024	0,044	0,057
N402	14913,107	-1840,701	6747,963	0,035	0,025	0,061	0,074
N403	11136,619	-7059,995	6752,573	0,038	0,025	0,058	0,073
N404	7340,281	-12255,269	6751,142	0,030	0,024	0,046	0,060
N405	3526,554	-17539,149	6750,890	0,044	0,034	0,081	0,098
N501	16806,266	797,902	8467,109	0,034	0,027	0,054	0,069
N502	11144,666	-7038,715	8476,178	0,037	0,024	0,050	0,066
N503	4727,001	-15901,834	8964,155	0,036	0,038	0,068	0,086
N601	19407,976	4377,827	12230,408	0,075	0,079	0,117	0,160
N602	12891,975	-4614,178	12231,352	0,058	0,050	0,074	0,106
N603	6328,987	-13645,877	12222,397	0,083	0,067	0,095	0,143
O101	3797,298	-14149,486	-3462,465	0,030	0,015	0,054	0,063
O102	-1330,825	-18047,523	-3453,107	0,033	0,017	0,090	0,097
O103	-3375,381	-16560,884	-3472,890	0,027	0,021	0,090	0,097
O104	-4275,427	-15913,600	-2853,707	0,029	0,019	0,078	0,085
O105	-5721,268	-14861,680	-3457,614	0,021	0,023	0,083	0,089
O106	-7728,645	-13404,910	-2815,006	0,038	0,027	0,088	0,100
O107	-9751,215	-11922,858	-3467,210	0,018	0,025	0,073	0,079
O108	-11077,764	-10964,586	-2812,089	0,018	0,020	0,075	0,080
O109	-12382,634	-10011,637	-3471,341	0,019	0,021	0,067	0,073
O110	-14288,903	-8627,194	-2801,338	0,018	0,025	0,088	0,094
O111	-16188,260	-7236,335	-3464,043	0,016	0,024	0,095	0,099
0112	-17473,327	-6304,886	-2814,305	0,025	0,041	0,099	0,110
O113	-18701,610	-5414,582	-3450,661	0,017	0,051	0,121	0,132
O114			aufgeg				
O201	3930,877	-14248,672	580,109	0,028	0,018	0,073	0,081
O202	-1267,979	-18094,355	-483,121	0,074	0,031	0,157	0,176
O203	-5787,645	-14813,047	-465,808	0,041	0,030	0,098	0,110
O204	-7385,841	-13646,940	-297,388	0,033	0,023	0,088	0,097
O205	-10750,932	-11185,215	-589,507	0,036	0,030	0,096	0,107
O206	-16160,596	-7258,960	-488,399	0,050	0,058	0,115	0,138
O207	-19468,573	-4867,104	-340,066	0,030	0,060	0,122	0,139

Punkt ID	X	Y	Z	σΧ	σY	σΖ	σ3D
O208			aufgegeben !				
O301	543,933	-19385,684	2769,742	-	-	-	0,134
O401	-1333,806	-18039,517	6765,803	0,034	0,028	0,066	0,079
O402	-5670,983	-14897,970	6764,324	0,030	0,028	0,059	0,072
O403	-10568,190	-11321,153	6763,606	0,028	0,030	0,054	0,068
O404	-15465,158	-7752,102	6755,356	0,033	0,036	0,061	0,078
O405	-20374,049	-4197,663	6758,733	0,029	0,042	0,071	0,087
O501	-2615,982	-17113,552	8848,793	0,035	0,030	0,057	0,073
O502	-10545,051	-11334,210	8487,221	0,030	0,032	0,051	0,067
O503	-17918,592	-5972,498	8478,747	0,029	0,035	0,056	0,072
S101			aufgeg	jeben !			
S102	-13814,728	10156,448	-3460,444	0,017	0,030	0,056	0,066
S103	-11367,355	13538,051	-3475,781	0,020	0,023	0,045	0,055
S104	-9251,146	16458,076	-3458,084	0,025	0,020	0,045	0,055
S105	-5514,189	18186,402	-3274,958	0,024	0,015	0,060	0,066
S106	43,716	18438,185	-3268,763	0,024	0,017	0,068	0,074
S201	-21366,723	-271,571	-47,103	0,039	0,072	0,126	0,150
S202	-12734,741	11634,490	784,607	0,020	0,031	0,048	0,061
S203	-9482,402	16133,461	783,996	0,021	0,018	0,047	0,054
S204	-5859,829	21147,102	781,468	0,029	0,019	0,068	0,076
S205	184,173	18613,682	985,640	0,024	0,019	0,057	0,065
S301	-20966,295	291,808	6757,399	0,026	0,036	0,060	0,074
S302	-17177,228	5516,640	7559,899	0,030	0,028	0,047	0,063
S303	-13208,278	10985,975	6751,989	0,026	0,026	0,055	0,067
S304	-9592,002	15967,381	6758,985	0,035	0,033	0,060	0,077
S305			nicht err	reichbar			
S401	-19065,916	2904,106	8490,989	0,035	0,031	0,056	0,073
S402	-13388,235	10739,387	8486,848	0,029	0,025	0,046	0,060
S403	-7666,523	18640,473	8494,936	0,048	0,043	0,091	0,111
S601	-18241,134	4070,397	12228,475	-	-	-	0,103
S602	-11621,427	13145,247	12211,867	0,044	0,045	0,073	0,096
S603	-5090,791	22223,555	12215,830	0,051	0,049	0,091	0,115
W101	-6276,400	18220,430	-3463,706	0,037	0,018	0,069	0,080
W102	-3377,237	20379,700	-3460,309	0,036	0,015	0,080	0,089
W103	-995,129	18655,169	-3469,841	0,057	0,017	0,089	0,107
W104	3638,178	18306,640	-3483,132	0,022	0,014	0,057	0,063
W105	6510,835	16215,974	-3473,130	0,022	0,015	0,037	0,046
W106	9495,213	14048,132	-3492,636	0,018	0,022	0,031	0,042
W107	12635,614	11776,740	-3473,161	0,015	0,027	0,035	0,046
W108	15672,228	9563,828	-3437,664	0,023	0,019	0,052	0,060
W109	19214,396	6982,154	-3436,754	0,019	0,023	0,062	0,069
W110	19245,859	6968,050	-1920,880	0,016	0,021	0,059	0,065
W201	-2959,435	20084,095	-547,532	0,037	0,014	0,062	0,073
W202	3526,601	18392,917	-540,760	0,024	0,017	0,062	0,068
W203	8384,826	14850,801	-549,070	0,019	0,016	0,036	0,043
W204	13204,692	11370,957	-548,807	0,017	0,017	0,036	0,043
W205	17835,433	7996,083	-543,949	0,017	0,021	0,074	0,079
W301	-508,964	18299,449	870,135	0,024	0,017	0,049	0,057

Punkt ID	X	Y	Z	σΧ	σY	σZ	σ3D
W401	-1379,395	21949,180	6739,652	0,030	0,023	0,052	0,065
W402	3507,279	18403,714	6739,751	0,032	0,022	0,042	0,057
W403	8384,948	14855,129	6739,711	0,031	0,024	0,052	0,066
W404	13292,322	11314,018	6744,393	0,030	0,027	0,058	0,070
W405	17582,829	8171,849	6736,169	0,032	0,025	0,047	0,062
W501	1054,197	20176,584	8485,268	0,039	0,032	0,062	0,079
W502	9012,512	14402,704	8197,275	0,033	0,028	0,052	0,068
W503	16214,938	9172,348	8280,358	0,033	0,034	0,061	0,077
						RMS	0,086

Bolzen	X	Y	Z			σZ	
SWB-WU	6107,0	16510,0	-3446,109	-	-	0,078	-
SWB-NU	6905,0	-12888,0	-3455,258	-	-	0,078	-
SWB-OU	-11288,0	-10806,0	-3441,458	-	-	0,079	-
SWB-WO	6066,0	16540,0	-487,929	-	-	0,096	-
SWB-NO	6934,0	-12847,0	-482,078	-	-	0,096	-
SWB-OO	-11329,0	-10777,0	-485,738	-	-	0,096	-
SWB-SO	-14082,0	9771,0	-490,819	-	-	0,096	-
SWB-SOO	-14141,0	9690,0	8,041	-	-	0,139	-

Bunkt ID	Differen	zen z. Nad	chmessun	g 2006	Differenzen z. Urnetz				
PUNKLID	dX	dY	dZ	dR	dX	dY	dZ	dR	
N101					0,705	0,186	0,304	0,790	
N102	0,405	0,011	0,229	0,465					
N103	0,091	-0,147	0,070	0,187	0,351	0,014	0,295	0,459	
N104	0,115	-0,233	-0,110	0,282	0,372	-0,051	0,144	0,402	
N105	0,110	-0,181	-0,139	0,254	0,365	-0,169	0,168	0,436	
N106	0,031	-0,177	-0,096	0,204	0,245	-0,234	0,163	0,376	
N107	0,103	-0,272	-0,171	0,337	0,188	-0,435	0,151	0,497	
N108	-0,002	-0,071	-0,085	0,111	0,159	0,026	0,239	0,288	
N109	-0,034	-0,196	-0,331	0,386	0,057	-0,276	0,081	0,293	
N201	0,302	0,033	0,100	0,320	0,649	0,218	0,327	0,759	
N202	0,097	-0,262	-0,041	0,282	0,338	-0,131	0,277	0,456	
N203	0,002	-0,309	-0,086	0,321	0,125	-0,411	0,253	0,499	
N204	-0,174	-0,293	-0,066	0,347	-0,144	-0,244	0,485	0,562	
N301	-0,148	-0,498	-0,122	0,533					
N401	0,359	-0,058	0,263	0,449	0,506	0,352	0,580	0,846	
N402	0,291	-0,155	0,240	0,408	0,349	0,093	0,653	0,746	
N403	0,266	-0,436	0,018	0,511	0,238	-0,229	0,520	0,616	
N404	0,051	-0,551	-0,040	0,554	-0,100	-0,491	0,555	0,748	
N405	-0,230	-0,636	-0,096	0,683	-0,359	-0,645	0,459	0,870	
N501	0,362	-0,069	0,189	0,414					
N502	0,223	-0,523	-0,003	0,568					
N503	-0,230	-0,732	-0,050	0,769					
N601	0,743	-0,022	-0,167	0,762					
N602	0,457	-0,304	0,081	0,555					
N603	0,176	-0,737	-0,050	0,760					
O101	0,000	-0,118	-0,035	0,123	0,215	-0,070	0,214	0,312	
O102	-0,080	-0,236	-0,316	0,402	0,066	-0,409	0,022	0,414	
O103	-0,010	-0,206	-0,182	0,275	0,072	-0,342	0,064	0,355	
0104	-0,046	-0,166	-0,292	0,339					
0105	0,034	-0,166	-0,304	0,348	0,038	-0,230	-0,102	0,254	
0106	-0,020	-0,112	-0,209	0,238				0,000	
0107	-0,025	-0,040	-0,479	0,481	0,010	-0,096	-0,128	0,160	
0108	-0,050	-0,029	-0,549	0,552					
0109	-0,062	0,000	-0,516	0,520	-0,036	0,000	-0,268	0,270	
0110	-0,069	-0,052	-0,428	0,437				0,000	
0111	-0,107	0,124	-0,636	0,657	-0,053	0,033	-0,383	0,388	
0112	-0,148	0,008	-0,486	0,508					
0113	-0,159	0,036	-0,351	0,387	-0,128	0,070	-0,176	0,228	
0201	-0,135	-0,307	0,117	0,355	0,024	-0,344	0,470	0,583	
0202	-0,072	-0,363	-0,284	0,466	0,002	-0,499	0,169	0,527	
0203	-0,104	-0,193	-0,181	0,284	-0,094	-0,224	0,074	0,254	
0204	-0,169	-0,113	-0,238	0,313					
0205	-0,163	-0,029	-0,243	0,294	-0,200	0,029	-0,047	0,207	
0206	-0,256	0,096	-0,605	0,664	-0,308	0,221	-0,398	0,549	
O207	-0,261	0,111	-0,588	0,653					

Anhang H: Vergleich der Koordinaten

Punkt ID	Differenzen z. Nachmessung 2006				Differenzen z. Urnetz			
FUIKLID	dX	dY	dZ	dR	dX	dY	dZ	dR
N101					0,705	0,186	0,304	0,790
N102	0,405	0,011	0,229	0,465				
N103	0,091	-0,147	0,070	0,187	0,351	0,014	0,295	0,459
N104	0,115	-0,233	-0,110	0,282	0,372	-0,051	0,144	0,402
N105	0,110	-0,181	-0,139	0,254	0,365	-0,169	0,168	0,436
N106	0,031	-0,177	-0,096	0,204	0,245	-0,234	0,163	0,376
N107	0,103	-0,272	-0,171	0,337	0,188	-0,435	0,151	0,497
N108	-0,002	-0,071	-0,085	0,111	0,159	0,026	0,239	0,288
N109	-0,034	-0,196	-0,331	0,386	0,057	-0,276	0,081	0,293
N201	0,302	0,033	0,100	0,320	0,649	0,218	0,327	0,759
N202	0,097	-0,262	-0,041	0,282	0,338	-0,131	0,277	0,456
N203	0,002	-0,309	-0,086	0,321	0,125	-0,411	0,253	0,499
N204	-0,174	-0,293	-0,066	0,347	-0,144	-0,244	0,485	0,562
N301	-0,148	-0,498	-0,122	0,533				
N401	0,359	-0,058	0,263	0,449	0,506	0,352	0,580	0,846
N402	0,291	-0,155	0,240	0,408	0,349	0,093	0,653	0,746
N403	0,266	-0,436	0,018	0,511	0,238	-0,229	0,520	0,616
N404	0,051	-0,551	-0,040	0,554	-0,100	-0,491	0,555	0,748
N405	-0,230	-0,636	-0,096	0,683	-0,359	-0,645	0,459	0,870
N501	0,362	-0,069	0,189	0,414	,	,	,	,
N502	0.223	-0.523	-0.003	0.568				
N503	-0,230	-0,732	-0,050	0,769				
N601	0.743	-0.022	-0.167	0.762				
N602	0.457	-0.304	0.081	0.555				
N603	0.176	-0.737	-0.050	0.760				
O101	0.000	-0.118	-0.035	0.123	0.215	-0.070	0.214	0.312
O102	-0.080	-0.236	-0.316	0.402	0.066	-0.409	0.022	0.414
O103	-0,010	-0,206	-0,182	0,275	0,072	-0,342	0,064	0,355
O104	-0,046	-0,166	-0,292	0,339	- , -	- , -	-,	- ,
O105	0.034	-0,166	-0.304	0.348	0.038	-0.230	-0.102	0.254
O106	-0,020	-0,112	-0,209	0,238	,	,	,	0,000
O107	-0,025	-0,040	-0,479	0,481	0,010	-0,096	-0,128	0,160
O108	-0,050	-0,029	-0,549	0,552				
O109	-0,062	0,000	-0,516	0,520	-0,036	0,000	-0,268	0,270
O110	-0,069	-0,052	-0,428	0,437				0,000
O111	-0,107	0,124	-0,636	0,657	-0,053	0,033	-0,383	0,388
O112	-0,148	0,008	-0,486	0,508	,	,	,	,
O113	-0,159	0,036	-0,351	0,387	-0,128	0,070	-0,176	0,228
O201	-0,135	-0,307	0,117	0,355	0,024	-0,344	0,470	0,583
O202	-0,072	-0,363	-0,284	0,466	0,002	-0,499	0,169	0,527
O203	-0,104	-0,193	-0,181	0,284	-0,094	-0,224	0,074	0,254
O204	-0,169	-0.113	-0.238	0.313	,	,	,	,
O205	-0,163	-0,029	-0,243	0,294	-0,200	0,029	-0,047	0,207
O206	-0,256	0,096	-0,605	0,664	-0,308	0,221	-0,398	0,549
O301	-0.120	-0.244	-0.104	0.291	,	,	,	,
O401	-0.399	-0.553	-0.221	0.717	-0,476	-0,469	0,423	0,791
O402	-0,483	-0,407	-0,243	0,677	-0,500	-0,101	0,356	0,622
O403	-0,469	-0,210	-0,236	0,565	-0,459	0.082	0,106	0.478
O404	-0.629	-0.003	-0,643	0.900	-0,449	0.213	-0,119	0.511
O405	-0,559	-0,029	-0,695	0,892	-0,509	0,318	-0,226	0,641

	Differenzen z. Nachmessung 2006				Differenzen z. Urnetz			
	dX	dY	dZ	dR	dX	dY	dZ	dR
O501	-0,453	-0,548	-0,138	0,725				
O502	-0,523	-0,281	-0,242	0,641				
O503	-0,704	0,015	-0,661	0,966				
S102	-0,018	-0,042	-0,699	0,700	0,061	-0,047	-0,647	0,652
S103	0,056	0,093	-0,555	0,565	0,113	0,045	-0,605	0,617
S104	0,032	0,105	-0,553	0,564	0,017	0,106	-0,517	0,528
S105	0,029	-0,004	-0,350	0,351	-0,050	-0,053	-0,385	0,392
S106	-0,014	-0,070	-0,267	0,276	-0,092	-0,086	-0,258	0,287
S201	-0,291	0,067	-0,613	0,682	-0,208	0,485	-0,535	0,752
S202	-0,108	-0,015	-0,688	0,697	-0,035	-0,065	-0,691	0,695
S203	-0,073	0,089	-0,626	0,636	-0,062	0,096	-0,529	0,541
S204	-0,178	0,154	-0,519	0,570	-0,352	0,319	-0,397	0,619
S205	-0,101	0,042	-0,087	0,140				
S301	-0,504	0,059	-0,758	0,912	-0,404	0,243	-0,473	0,668
S302	-0,381	0,034	-0,794	0,881	-0,094	-0,015	-0,368	0,380
S303	-0,287	-0,026	-0,661	0,721	-0,004	-0,141	-0,347	0,374
S304	-0,341	0,004	-0,505	0,610	-0,164	-0,012	-0,232	0,285
S401	-0,516	0,107	-0,858	1,007				
S402	-0,336	0,038	-0,720	0,795				
S403	-0,412	0,230	-0,579	0,747				
S601	-0,474	0,156	-0,541	0,736				
S602	-0,442	0,032	-0,517	0,681				
S603	-0,495	0,288	-0,209	0,609				
W101	0,018	0,016	-0,318	0,319	-0,017	-0,019	-0,390	0,391
W102	0,076	0,181	-0,251	0,319	-0,119	0,412	-0,205	0,476
W103	0,005	-0,071	-0,257	0,267	-0,138	-0,135	-0,199	0,277
W104	-0,005	0,011	-0,184	0,184	-0,017	0,091	-0,263	0,279
W105	0,074	-0,037	-0,010	0,083	0,035	0,062	-0,178	0,192
W106	0,147	-0,029	-0,047	0,157	0,195	0,077	-0,069	0,221
W107	0,240	0,031	0,179	0,301	0,357	0,132	0,134	0,404
W108	0,516	0,096	0,311	0,610	0,516	0,096	0,311	0,610
W109	0,708	0,130	0,258	0,764	0,708	0,130	0,258	0,764
W110	0,336	-0,074	0,139	0,371				
W201	-0,156	0,104	-0,222	0,291	-0,340	0,208	-0,008	0,399
W202	-0,033	0,014	-0,102	0,108	-0,187	0,165	-0,153	0,292
W203	0,075	-0,026	0,063	0,101	0,026	0,095	-0,008	0,099
W204	0,215	0,039	0,223	0,313	0,312	0,177	0,200	0,411
W205	0,336	0,023	0,016	0,337	0,607	0,184	0,145	0,651
W301	-0,055	0,042	-0,111	0,131	-0,182	0,053	0,179	0,261
W401	-0,425	0,290	-0,456	0,687	-0,608	0,471	-0,226	0,801
W402	-0,192	0,140	-0,012	0,238	-0,509	0,320	0,114	0,612
W403	-0,071	0,007	0,249	0,259	-0,285	0,300	0,170	0,447
W404	0,076	0,158	0,162	0,239	-0,016	0,358	0,341	0,495
W405	0,279	0,143	0,139	0,343	0,378	0,377	0,425	0,682
W501	-0,436	0,276	-0,192	0,550				
W502	-0,056	0,175	0,070	0,197				
W503	0,218	0,148	0,212	0,338				
min	-0,704	-0,737	-0,858		-0,608	-0,645	-0,691	
max	0,743	0,290	0,311	1,007	0,708	0,485	0,653	0,870