Fachbereich Landschaftswissenschaften und Geomatik Studiengang Landschaftsarchitekur

Bachelorarbeit

Thema:

Solarnutzung und Dachbegrünung

(Entwurf für eine Dachsanierung in Taiwan, Stadt Tainan)

Bearbeitet von
Chuan- Wen, Wu

NRN:nbn:de:gbv:519-thesis2021-0008-4

Erstprüfer:	Prof. Dr. Manfred Köhler
Zweitprüfer:	Dipl.-Ing. (FH) Martin Holland (ZinCo GmbH, Nürtingen)
Ausgabedatum:	14.12 .2020
Abgabedatum:	05.02 .2021

Inhaltsverzeichnis

Inhaltsverzeichnis 1
A. Einleitung- Die globalen Herausforderungen 3
B. Entwicklung erneuerbarer Energien in Taiwan (R.O.C.) 5
B. 1 Herausforderungen der Energieerneuerung. 5
C. Einführung in die Photovoltaikanlage (PV) 9
C. 1 Grundlagen 9
C. 2 Prinzip einer Photovoltaik-Anlage 11
C.2.1 Photovoltaik(PV)- Module 12
C.2.2 Wechselrichter 14
C.2.3 Zähler 16
C. 3 Sonnenstrahlung 17
C.3.1 Solarenergiepotenzial- 18
C.3.1.1 Vergleich der Globalstrahlung mit Berlin, Bangkok und Taiwan 19
C.3.1.2 Einstrahlung 19
C.3.2 Verschattung 20
C. 4 Kombination von Dachbegrünung 21
D. Entwurf für eine Dachsanierung mit Solarnutzung und Dachbegrünug in Taiwan, Stadt Tainan 23
D. 1 Landprofile 23
D.1.1 Klima und Natur 24
D.1.2 Naturkatastrophen- Taifun. 24
D. 2 Projektziele 25
E. Zusammenfassung und Ausblick 26
F. Verzeichnisse 28
F. 1 Abbildungsverzeichnis. 28
F. 2 Tabellenverzeichnis 29
F. 3 Literaturverzeichnis 29
Anhang: 31
(Planungen von dem Entwurf für Dachsanierung) 31

A. Einleitung- Die globalen Herausforderungen

Um eine effizientere Lebensqualität zu erreichen, entwickeln die Menschen weiterhin unterschiedliche Technologien zur Energieerzeugung. Dies hat zu verschiedenen Arten von Energietechnologien auf hohem Niveau geführt. Neben den positiven Seiten gibt es auch negative, insbesondere die der Umweltschäden. Nationen auf der ganzen Welt haben allmählich erkannt, dass die auf Grund der überwiegenden Nutzung fossiler Energieträger steigende globale Temperatur ein ernstes Problem ist. Viele Länder haben Internationale Umweltabkommen wie etwa das Übereinkommen von Paris 2015 unterzeichnet, um der weiteren Verschlechterung der Situation entgegenzuwirken. Mit anderen Worten - die Reduzierung der Treibhausgasemissionen aus der Nutzung fossiler Energien ist eine globale Aufgabe.

Die Technologien der erneuerbaren Energien entwickeln sich maßgeblich von den weltweiten Trends. Unter ihnen wird die Solartechnologie in Zukunft eine wichtige Rolle spielen. Deutschland ist ein Vorbild bei der Entwicklung alternativer Energien. Laut Fraunhofer-Institut für Solare Energiesysteme ISE waren Ende 2019 in Deutschland PV-Module von ca. 49 GW installiert, verteilt auf 1,8 Mio. Anlagen. (Wirth, 2020). Es gibt auch hervorragende Ergebnisse in Asien. Die PV-Stromerzeugung in Thailand ist von 0.05 GW im Jahr 2010 auf 3,3 GW im Jahr 2018 gestiegen. (Mehner, Tuttaworn, Srisutam, \& Khusribanchong, 2018).

Auch mein Heimatland Taiwan ist keine Ausnahme. Taiwan ist ein kleines Inselland mit 23 Millionen Einwohnern. Die Landfläche entspricht in etwa der der Niederlande. Die taiwanische Regierung hat das umweltpolitische Ziel, die fossile Energie und Kernenergie hinter sich zu lassen. Um dieses zu erreichen, muss die gesamte

Solarstromerzeugungskapazität von 3 GW im Jahr 2017 auf 20 GW im Jahr 2025 steigen. Das heißt, dass jedes Jahr eine Kapazität von zusätzlich durchschnittlich 2 bis 2,5 GW installiert werden muss.

Für die Installation einer Solaranlage besteht großer Platzbedarf. Dafür bieten Dachsanierungen der Wohndächer eine Vielzahl von Installationsmöglichkeiten. Die Bausituation variiert von Land zu Land. Aufgrund der überwiegend subtropischen Klimabedingungen in Taiwan - starke Regenfälle, hohe Temperaturen und Luftfeuchtigkeit wurden zahlreiche Häuser mit einem weiteren zusätzlichen Dach gedeckt. Dieses Phänomen ist in Taiwan normal, wenn auch oft nicht legal. Überdachte Dächer sind unschön und die Stadtlandschaft wird dadurch negativ beeinflusst. Durch die Förderung von Solardächern können nicht nur Treibhausgase reduziert werden, auch die Stadtlandschaft lässt sich dadurch positiv verändern.

B. Entwicklung erneuerbarer Energien in Taiwan (R.O.C.)

CO2-Reduzierung und Ausstieg aus Kernenergieerzeugung bis 2025

Die internationale politische und wirtschaftliche Situation ändert sich rasant. Energie und Umwelt sind ebenfalls Themen, die nicht ignoriert werden dürfen. Die Welt befindet sich in einer kritischen Phase des Ersatzes bisher vorherrschender Energieerzeugungsformen. Energie ist nicht nur eine Quelle zur Förderung der wirtschaftlichen Entwicklung. Grüne Energietechnologie und energiesparende Technologien liefern dabei einen Grundstein zur Schaffung neuer Industrien. Es ist eine gemeinsame Herausforderung für die Welt, die Energiesysteme stetig zu aktualisieren, die Energiestabilität zu gewährleisten und gleichzeitig die wirtschaftliche Entwicklung zu berücksichtigen.

B. 1 Herausforderungen der Energieerneuerung.

Ein Energiebericht, der 2017 von der Internationalen Energieagentur (International Energy Agency, IEA) veröffentlicht wurde, zeigt, dass die zukünftige globale Stromerzeugung voraussichtlich von 24,77 Billionen kWh im Jahr 2016 auf 39,29 Billionen kWh im Jahr 2040 steigen wird, der Anstieg beträgt 58,6 \%. Besonders wichtig dabei ist, dass der Anteil der fossilen Energie von $65,2 \%$ auf $50,3 \%$ sinkt. Es ist erwähnenswert, dass der Anteil der erneuerbaren Energien von 7,9\% auf 24,1\% steigt. Insgesamt steigt der Anteil erneuerbarer Energien, während der Anteil von fossiler Energie zurückgeht. Erneuerbare Energien werden zum Trend der zukünftigen Energieerzeugung. Die EU-Länder investieren aktiv in die Entwicklung erneuerbarer Energien und setzen sich langfristige und kurzfristige Ziele. In Deutschland ist beispielsweise das Ziel des deutschen Umweltbundesamtes, das Land bis zum Jahr 2050 treibhausgasneutral zu machen ${ }^{1}$. Außerhalb der EU sind die Zielsetzungen durchaus unterschiedlich. So strebt Taiwan bis zum Jahr 2025 einen Anteil von 20\% der

[^0]Gesamtenergieerzeugung aus erneuerbaren Energiequellen an. ${ }^{2}$ Das Gesamtpaket der erneuerbaren Energien besteht aus verschiedenen Arten der nachhaltigen Stromerzeugung. In der vorliegenden Arbeit wird nur die Sonnenenergie betrachtet.

Auf Grund der geografischen Bedingungen gibt es keine natürlichen Energiequellen in Taiwan. Als Industrieland ist es im Energiesektor zurzeit zu 98\% von Importen abhängig. ${ }^{3}$ Diese unterliegen den Turbulenzen der internationalen Energiesituation mit den sich daraus ergebenden Preisschwankungen. Der Anteil petrochemischer Energie ist dabei hoch. Dem Trend der globalen Reduzierung von Treibhausgasen und der Energieversorgungssicherheit folgend muss Taiwans seine Energieerzeugung ändern.

Seine Stromerzeugungsstruktur für 2019 bestand aus gasbetriebener Energie(38.2\%), Kohleenergie (35.7\%), Kernenergie (13.4\%), erneuerbaren Energien (6\%) und anderen Energiequellen $(6.7 \%)^{4}$. Fossile Brennstoffe machen also den größten Teil der gesamten Stromerzeugung aus. Daher sind Umweltverträglichkeit, grüne Wirtschaft und Energiesicherheit mittlerweile Kernziele der taiwanischen Stromversorgung. Die Reduzierung der Kohleverstromung auf 27% und die Stilllegung der Kernenergie sind die zukünftigen Trends der taiwanischen Energiepolitik. Um diese Ziele zu erreichen, will man den Anteil erneuerbarer Energien von 6\% im Jahr 2019 auf 20\% im Jahr 2025 erhöhen.

Stromerzeugungsstruktur, Taiwan

Abb.1: 2019-2025 Anteil der Stromerzeugungsstruktur in Taiwan
(Bureau of Energy, Ministry of Economic Affairs, R.O.C)

[^1]Die erneuerbaren Energien sind im Wesentlichen konventionelle Wasserkraft, Biomasseenergie, Windkraft, Geothermie und Solar. Letztere spielt dabei eine Schlüsselrolle. Nach Regierungsplänen soll die gesamte Stromerzeugungskapazität aus Solarphotovoltaik im Jahr 202520 GW erreichen, was einer jährlichen Stromerzeugung von 25 Milliarden kWh entspricht.

Während sich Solarenergie ein Blick auf die Daten zeigt es weltweit gut zu entwickeln scheint, hat man in Taiwan immer noch Platzprobleme und übermäßige Investitionskosten. Eine Photovoltaikanlage hat einen großen Platzbedarf. Damit sie erfolgreich funktionieren kann, muss ein geeigneter Ort gefunden werden. Taiwans Landfläche ist nicht groß und das Hochgebirge nimmt den größten Teil des Landes ein. So ist es nicht einfach, einen passenden Standort zu finden. Dennoch hat die Stromerzeugung aus Solarphotovoltaik im Jahr 2020 im Vergleich zum Jahre 2018 stark zugenommen: sie beträgt 6,5 GW. Um das Energieziel 20 GW bis 2025 zu erreichen ${ }^{5}$, müssen aber Anlagen mit durchschnittlich 2,7 GW pro Jahr installiert werden.

Abb.2:2018-2025 Solarenergietrends von 2018 bis 2025 in Taiwan
(Bureau of Energy, Ministry of Economic Affairs, R.O.C)
Bei Platzproblemen bot sich das sog. Energiespar- Contracting an, um die Solarenergieprojekte weiterentwickeln zu können. Energiespar- Contracting ist ein Geschäftsmodell (aus dem Englischen, "contract", also Vertrag.) Es bietet die Möglichkeit,

[^2]dass alle beteiligten Parteien einen Gewinn erzielen. Eine Zusammenarbeit von - auch privaten - Immobilienbesitzern, Energietechnologieunternehmen und privaten Finanzieren ermöglicht es direkt oder indirekt, dass mehr private Räume in Städten zur Verfügung stehen. Dennoch war es in den letzten Jahren möglich, eine Vielzahl von Anlagen zur Nutzung als Solarflächen installieren, was zusammen mit dem inzwischen erreichten technologischen Fortschritt zu einer Senkung der Kosten für Solarenergie geführt hat. Laut einer Statistik des taiwanischen Wirtschaftsministeriums sind die Kosten für neue Photovoltaik-Solaranlagen zwischen 2010 und 2016 um 70\% gesunken. Die obengenannten Maßnahmen gegen Platzprobleme und übermäßige Investitionskosten müssen jeweils noch auf den entsprechenden Standort angepasst und für diesen optimiert werden.

Abb.3: Schema: Energiespar- Contracting (Eigene Darstellung)

C. Einführung in die Photovoltaikanlage (PV)

C. 1 Grundlagen

Fossile Rohstoffe sind keine unerschöpflichen Ressourcen, weil sie nicht mehr ersetzt werden können. Sie sind für immer verloren. Durch die Entwicklung alternativer Energiequellen lässt sich der größte Teil der benötigten Energie auf umweltfreundliche Weise gewinnen. Voraussetzung ist, dass diese erweitert werden und die Technologie optimiert wird. Für die vorliegende Arbeit ist die Sonne ein potentiell besonders geeigneter Energielieferant. Eine unbegrenzte Energie durch Sonnenstrahlung steht uns kostenlos zur Verfügung. Wenn diese große Chance genutzt werden soll, müssen solare Systeme immer weiter entwickelt werden. (Konrad, 2008, S. 1)

Photovoltaik ist die Umwandlung von Sonnenlicht in Energie. Diese Technologie wurde erstmals 1839 von Alexandre Edmond Becquerel in Paris erfunden. ${ }^{6}$

Abb.4: Solarkreislauf
(Planung von Photovoltaik-Anlagen, 2008 Frank Konrad S. 3)

[^3]Die photovoltaische Stromerzeugung stellt eine weitere Form der direkten Nutzung der Globalstrahlung dar. (Konrad, 2008, S. 3) . Der Begriff enthält zwei verschiedene Systeme der aktiven Anwendung von Sonnenenergie, nämlich Solarthermie und Photovoltaik.

Abb.5:Photovoltaik
(Planung von Photovoltaik-Anlagen, 2008 Frank Konrad S. 3)

Abb.6: Solarthermie und Photovoltaik (https://images.app.goo.gl/dGeMxZ5LvveTLWkX7)

Die Photovoltaik macht sich die Globalstrahlung der Sonne zunutze, um Solarzellen aufzuladen. Sonnenlicht wird von Siliziumzellen in elektrischen Strom umgewandelt und gespeichert. Dieser Strom hat hat zwei Verwendungszwecke: Der erste Zweck ist die direkte Verwendung vor Ort. Der zweite ist die Einspeisung des gewonnenen Stroms in das öffentliche Stromnetz. Je nach Bedarf können beide Verwendungszwecke gemischt werden:

Nachdem der benötigte Strom vor Ort verwendet wurde, wird der Stromüberschuss in das öffentliche Stromnetz eingespeist.

C. 2 Prinzip einer Photovoltaik-Anlage

Ein Photovoltaik-Modul wandelt Sonnenenergie in Gleichstrom (DC) um, welcher wiederum durch den Wechselrichter in netzkonformen Wechselstrom (AC) umgewandelt wird. Ein Zähler ist für die Berechnung der Ausgangs- und Eingangsleistung verantwortlich. Der umgewandelte und verwaltete Strom steht für Verbrauchsgeräte im Haus zu Verfügung und speist in das Stromnetz ein.

Im wesentlich besteht es aus folgenden Komponenten.

- Photovoltaik(PV)- Module
- Wechselrichter
- Zähler

Das Prinzip einer Photovoltaik wird entsprechend der technologischen Entwicklung kontinuierlich verbessert. Das bedeutet, dass sich die Komposition dieses Systems ständig ändert und weiterentwickeln kann.

Abb.7: Schema- Photovoltaik-Anlage
(http://janke-immobilien.de/neu/energieanlagen/photovoltaik/pv-detail.htm) (2.11.20)

C.2.1 Photovoltaik(PV)- Module

Die Solarzelle ist die kleinste Einheit einer Photovoltaik-Anlage. Falls Sonnenlicht auf die Oberfläche der Solarzellen trifft, werden Elektronen der Zelle freigesetzt. In einer Solarzelle werden Elektronen wie bei einer Batterie in einen Plus- und ein Minuspol unterteilt. Diese Potentialdifferenz erzeugt Gleichstrom. Die Stromstärke ist proportional zur Lichtintensität. Je stärker das Sonnenlicht ist, desto intensiver ist die Trennung der Elektronen, wodurch ein stärkerer Strom erzeugt wird.

Ein PV-Modul besteht aus mehreren Solarzellen. Die Solarzellen werden unter einer Schutzschicht geschlossen, um gegen Witterungseinflüsse zu schützen.

Abb.8: Aufbau einer Solarzelle(https://www.solaranlage.de/technik/solarzellen) (2.11.20)
Der Aufbau einer Photovoltaikanlage

Abb.9:Der Aufbau eines Photovoltaik-Modules (https://www.solaranlage-ratgeber.de/)(3.11.20)

Neben der Lichtintensität spielt die Art der Solarzellen eine Schlüsselrolle für Stromerzeugung. Eigenschaften der Solarzellen sind unterschiedlich. Es gibt die folgenden Arten und ihre Eigenschaften.

- Monokristalline Solarzellen
- Polykristalline Solarzellen

- Dünnschichtsolarzellen

Monokristalline Solarzellen

Der Wirkungsgrad der Umwandlung von Sonnenenergie in monokristalline Solarzellen ist am besten von allen Arten mit ca. 20\%. ${ }^{7}$ Monokristalline Solarzellen bestehen aus Silizium. Sie sehen glatt aus und haben eine dunkelblaue oder schwarze Farbe. Ihre Lebensdauer kann 30 Jahre erreichen. Aufgrund der langen Herstellungszeit und der hohen Produktionskosten ist der Preis jedoch teurer als die beiden anderen Arten.

Polykristalline Solarzellen

Der Wirkungsgrad der Polykristalline Solarzellen beträgt ca. 14\%. Der Produktionsprozess besteht darin, flüssiges Silizium in das Modell zu gießen und es zu formen. Das erstarrte Silizium zeigt einen polykristallinen Zustand. Ihr Preis ist etwas niedriger als bei monokristallinen Solarzellen. ${ }^{8}$

Dünnschichtsolarzellen

Der Wirkungsgrad der Dünnschichtsolarzellen wird in naher Zukunft voraussichtlich 10\% überschreiten. ${ }^{9}$ Ihr Prozess unterscheidet sich grundlegend von Mono- und Polykristallinen Solarzellen. Bei dieser Technologie ist ein Halbleiter auf einem Trägermaterial aufgebracht Trägermaterial beschichtet. Die Herstellung erfordert weniger Rohstoffe, daher ist der

[^4]
Preis am günstigsten von allen Arten. ${ }^{10}$

Flächenbedarf der Wirkungsgrade

Wie viel Strom die PV- Anlage an einem Tag erzeugen kann, hängt von dem Wirkungsgrad der Solarzellen und den durchschnittlichen Sonnenstunden am Installationsort ab. Die Summe der maximalen Stromerzeugung einer PV- Anlage gibt man in kWp (Spitzenleistung) an. Es ist stets abzuwägen, wie viel Strom benötigt wird und wie viel Fläche dafür benötigt wird.

Für 1 kWp Leistung setzen die verschiedenen Arten folgende Flächen voraus ${ }^{11}$:

- Monokristalline Module 6 - $9 \mathrm{~m}^{2}$
- Polykristalline Module 9 - 11 m2
- Dünnschichtsolarmodule 16 - 20 m2

Zelltyp	Beispielbild	Vorteile	Nachteile
Monokristalline Solarzellen		1. Hocher Wirkungsgrad 2. Geringerer Flächenbedarf 3. Unterschiedliche Farben	1. Entsprechend höherer Flächenbedarf von $6-9 \mathrm{~m} 2 / \mathrm{kWp}$ 2. kostenintensiv
Polykristalline Solarzellen		1. Preiswerte Fertigung 2. Lang erprobte Technik	1. Entsprechend höherer Flächenbedarf von 9-11m2/kWp
Dünnschichtsolarzellen		1. Preiswerte Herstellung 2. geringer Rohstoffbedarf 3. Temperaturbeständig 4. Flexibles Trägermaterial	1. Geringer Wirkungsgrad 2. Teilweise in schwerer Glas Sandwichtechnologie 3. Hoch Anfangsdegradation 4. Entsprechend höherer Flächenbedarf von $16-20 \mathrm{~m} 2 / \mathrm{kWp}$

Tabelle 1 Vergleiche Arten der PV- Module und ihre Eigenschaften. ${ }^{12}$
https://www.itwissen.info/Duennschichtsolarmodul-thin-film-solar-cell.html (3.11.20)

C.2.2 Wechselrichter

Wechselrichter sind für eine Photovoltaik-Anlage notwendig. Die Hauptfunktion des Wechselrichters ist das Umwandeln des Gleichstroms. Der von Solarzellen produzierte Gleichstrom muss in Wechselstrom umwandelt werden, um von Verbrauchern direkt benutzt

[^5]oder um ihn in ein öffentliches Netz einspeisen zu können.
Es gibt verschiedene Typen des Wechselrichters für verschiedene Verwendungszwecke, wie zum Beispiel: Modulwechselrichter für kleinere Anlagen, Stringwechselrichter für mittlere Anlagen, Multistringwechselrichter und Zentralwechselrichter für Großanlagen.

Der Strom wird mit zunehmender Entfernung schwächer. Daher wird ein Wechselrichter am besten in der Nähe des Photovoltaik(PV)- Modules installiert um die größtmögliche Strommenge sicherzustellen. Wechselrichter sind nicht für den Betrieb bei hohen Temperaturen geeignet und sollten an einem gut belüfteten und leicht zugänglichen Ort installiert werden. ${ }^{13}$ Ein gut funktionierendes System erfordert ein maßgeschneidertes Design. Daher muss eine Photovoltaik-Anlage an die örtlichen Gegebenheiten angepasst werden. Es gibt eine Vielzahl der Bewertungssysteme für Wechselrichter, die von Herstellern zur Verfügung gestellt werden. Man sollte vor der Installation den Hersteller befragen. ${ }^{14}$

Abb.10: Modulwechselrichter
(https://www.shop-muenchner-solarmarkt.de/sma-sb-3600tl-21-wechselrichter.htm)(06.11.20)

[^6]
C.2.3 Zähler

Stromzähler befinden sich in jedem Haus oder jeder Wohnung. Wenn eine Photovoltaik-Anlage den Betrieb aufgenommen hat, muss ihre Leistung gezählt werden. Es werden folgende Arten von Photovoltaik-Stromzählern unterschieden:

Einspeisezähler: Wird der Solarstrom in das öffentliche Netz einspeist, muss die Leistung pro Kilowattstunde gezählt werden. Die Einspeisezähler gehören normalerweise Netzbetreibern, die für den Betrieb der Anlage eine Abschlagszahlung leisten. ${ }^{15}$

Bezugszähler: Mit einem Bezugszähler wird der Grundstromverbrauch eines Hauses berechnet, auch wenn keine Solaranlage vorhanden ist. Bezugszähler verbleiben immer im Eigentum des Netzbetreibers. ${ }^{16}$

Zweirichtungszähler: Zweirichtungszähler kombiniert die Funktionen von Einspeisezähler und Bezugszähler in einem Zähler. Er kann gleichzeitig die Leistungsaufnahme und den Stromverbrauch berechnen. ${ }^{17}$

Ertragszähler: Der gesamte von der Solaranlage produzierte Strom wird vom Ertragszähler gemessen. Im vergleicht zum Bezugszähler nur den Anteil der Einspeisung in das öffentliche Netz gemisst. Es ist notwendig einen Ertragszähler zu installieren, wenn man seine Eigenverbrauchsmenge für die Umsatzsteuer nachweisen möchte. ${ }^{18}$

[^7]

Abb.11: Drehstromzähler (https://stromzähler.eu/stromzaehler/drehstromzaehler/) (18. 01.21)

C. 3 Sonnenstrahlung

Die Sonnenstrahlung wird von der Atmosphäre, Erdoberfläche und dem Meere aufgenommen. Durch die Wärmeeinstrahlung wird eine Durchschnittstemperatur auf etwa $15^{\circ} \mathrm{C}$ erreicht und ist die Grundvoraussetzung für Leben auf der Erde.

Die Erde dreht sich um die eigene Achse und gleichzeitig um die Sonne. Wegen der Unterschiede der Bestrahlungsintensität definiert die Position der Erde zur Sonne die Jahreszeiten. Daher ist sie entscheidend für die solaren Strahlungsgewinne.

Der Standort des Projekts hat einen großen Einfluss auf die Solareffizienz. Um die Solarenergieeffizienz zu verbessern, müssen die folgenden Punkte beachtet werden. ${ }^{19}$

- Solarenergiepotenzial- Globalstrahlung und Einstrahlung
- Verschattung- Temporäre Schatten, standortbedingte und entwurfsbedingte Verschattung,

[^8]
C.3.1 Solarenergiepotenzial-

Globalstrahlung (GHI)

Abhängig vom Standort gibt es verschiedene geeignete Messmethoden zur Bewertung des Solarenergiepotenzials in Ländern oder Regionen. Je nach Standort gibt es für jeden Standort geeignete Messmethoden.

Grundsätzlich sind jedoch global verfügbare und konsistente Daten erforderlich. Für die PV-Technologie wird der Energiegehalt durch die physikalische Variable der Globalstrahlung (GHI) gut quantifiziert (Marcel Suri, et al., 2020). Globalstrahlung (Global Horizontal Irradiation) setzt sich aus der Direktstrahlung (DNI - Direct Normal Irradiation) und der diffusen Strahlung (DHI - Diffuse Horizontal Irradiation) in kWh/m2 zusammen.

$$
\mathrm{GHI}=\mathrm{DHI}+\mathrm{DNI} \cdot \cos (\theta)
$$

(wobei θ den Winkel angibt, in dem die Sonnenstrahlung auf die Erdoberfläche trifft)
(Formel der Globalstrahlung)
Die GHI ermöglicht einen Vergleich der Bedingungen für die PV-Technologie ohne Berücksichtigung eines bestimmten Kraftwerksdesigns und einer bestimmten Betriebsart.

Globalstrahlung(GHI)

Abb.12: Schema zu Globalstrahlung
(Eigene Darstellung)

C.3.1.1 Vergleich der Globalstrahlung mit Berlin, Bangkok und Taiwan

Nach Angaben des Global Solar Atlas (GSA) liegt der durchschnittliche WHI in Berlin bei $1049.5 \mathrm{kWh} / \mathrm{m}^{2} .{ }^{20} \mathrm{Im}$ Vergleich zu Berlin ist der durchschnittliche WHI-Wert von 1788.7 $\mathrm{kWh} / \mathrm{m}^{2}$ in Bangkok, Thailand, viel höher. ${ }^{21}$ Der der durchschnittliche WHI-Wert in Taiwan liegt bei $1571.2 \mathrm{kWh} / \mathrm{m}^{2}$. ${ }^{22}$ Es ist höher als in Berlin und etwas niedriger als in Bangkok.

Abb.13: Karte der Globalstrahlung von Links nach rechts: Thailand Deutschland und Taiwan (https://globalsolaratlas.info/map)

C.3.1.2 Einstrahlung

Der Einfallswinkel des Sonnenlichts hat einen direkten Einfluss auf den Wirkungsgrad der Stromerzeugung. Globalstrahlung (GHI) bezieht sich auf den Wert des Sonnenlichts auf einer horizontalen Fläche. Für geneigte Flächen mit verschiedener Einstrahlung werden sich andere Werte ergeben, sodass der Globalstrahlungswert um einen Flächenfaktor korrigiert werden muss. Durch die Modulneigung wird der Wirkungsgrad maximieret. Optimale Energieerträge erzielt man in Deutschland mit einer Ausrichtung von 30° bis 40° zur Horizontalen nach Süden geneigten Fläche. Den Einstrahlungsgewinn kann man projektspezifisch über diverse Simulationsprogramme exakt berechnen. (Konrad, 2007) Daraus ist ersichtlich, dass der Wirkungsgrad einer Solarstromerzeugung abhängig von Ausrichtung und Neigungswinkel des Solarsystems ist.

[^9]Flächenfaktor : Abhängigkeit von Ausrichtung und Neigungswinkel

C.3.2 Verschattung

Die Vermeidung der Schattenbildung hat eine große Bedeutung für den Wirkungsgrad der Stromerzeugung, denn Schatten kann einen Energieverlust verursachen. Es gibt drei Schattenarten, die grob unterschieden werden. ${ }^{23}$

Temporäre Schatten

Die Blätter fallen mit den Jahreszeiten. Heruntergefallene Blätter können Solar-Anlagen verschatten. Bei schlechtem Wetter steigt besonders die Wahrscheinlichkeit, dass fallende Blätter an der Oberfläche der Solar-Anlagen haften bleiben.

Nicht nur Blätter, sondern auch andere Faktoren wie Schnee, Vogelkot, fallender Staub usw können für temporäre Verschattung sorgen. Durch regelmäßige Reinigung kann die temporäre Verschattung verhindert werden.

Standortbedingte Verschattung

Die Schatten fester Gebäude sind unvermeidlich. Solar-Anlagen, die in Gebieten mit hoher

[^10]Dichte installiert werden haben eine größere Wahrscheinlichkeit der Beschattung.
Die Schattensituation muss vor der Installation in 3D oder CAD analysiert werden, um entsprechende Maßnahmen zu entwickeln.

Entwurfsbedingte Verschattung

Bei Neubauprojekten gibt es häufig spezielle architektonischen Formen oder versetzte Strukturen. In diesem Fall wird der Schattenabdeckungsbereich unvorhersehbar und die Simulation per CAD erschwert.

Wie bei der standortbedingten Verschattung können Benutzer mithilfe von Computersimulationstechnologie bewerten, wie sie installiert werden müssen, um den größtmöglichen Nutzeffekt zu erzielen.

Mögliche Verschattungen

Abb.15: Mögliche Verschattungen(Eigene Darstellung)

C. 4 Kombination von Dachbegrünung

Dachbegrünung ist eine Form der Dacheindeckung, die mit einer Vegetationsschicht ausgeführt wird. ${ }^{24}$ Unter diesem Begriff werden zwei unterschiedliche Arten verstanden: Extensivbegrünung und Intensivbegrünung. Erstere ist eine angelegte Begrünung auf Flächen oder Dächernund benötigt weniger aufwändige Pflege durch den Einsatz von Pflanzen für natürliche Trockenstandorte. Im Vergleich zu Extensivbegrünung wird eine

[^11]Intensivbegrünung mit dem Begriff Dachgaten beschrieben. ${ }^{25}$ Sie wird als zusätzliche Nutzfläche und erweiterter Wohnraum von Menschen genutzt und hat höhere Anforderung an die Bau-, Vegetationstechnik, Pflege und Wartung. ${ }^{26}$

Ökologisches Bauen ist immer eine Leitlinie für den zeitgenössischen Städtebau. Dafür ist die Gebäudebegrünung ein wichtiges Instrument. Dachbegrünung wirkt sich nicht nur positiv auf das ökologische Umfeld der Stadt aus, sondern trägt auch zum Lebensumfeld der Menschen bei. Das städtische Mikroklima wird durch Lufttemperaturkühlung, Regenwassermanagement und Biodiversität positiv beeinflusst. Boden und Pflanzen können das Abfließen von Regenwasser verzögern. Die Evapotranspiration wird durch die zugenommene Grünfläche die Wärme abführen. Durch die Zusammensetzung von Begrünung und Gebäudestruktur oder Fassadenstruktur wird eine bessere Gebäudedämmung erzielt.

Grüne Grundstücke sind in dichten städtischen Räumen wertvoll und kostspielig. Die Begrünung von Gebäuden ist eine erschwingliche Technik. Dadurch ist es Stadtbewohnern möglich, in einer grüneren Umgebung zu leben. ${ }^{27}$.

Die Kombination von Begrünung und Solarnutzung hat sich seit vielen Jahren bewährte., da Solarzellen durch Leistungsverlust auf hohe Umgebungstemperaturen reagieren. Dachbegrünung senkt die Temperatur auf dem Dach und lässt somit den Ertrag der Solaranlage steigen. ${ }^{28}$.

Die tatsächliche Stromerzeugung hängt von den regionalen Bedingungen ab. Dieses Phänomen der Leistungssteigerung sollte im Einzelfall diskutiert werden und durch unterschiedliche Untersuchungen nachgewiesen werden.

[^12]

Abb.16: Synergieeffekte von Photovoltaik und Dachbegrünung(Eigene Darstellung)

D. Entwurf für eine Dachsanierung mit Solarnutzung und

Dachbegrünug in Taiwan, Stadt Tainan.

D. 1 Landprofile

Das Land Taiwan liegt im Osten Asiens an der Kreuzung von Nordostasien und Südostasien und erstreckt sich über eine Gesamtfläche von $36.188 \mathrm{~km} 2^{29}$. Es grenzt an folgende Nachbarstaaten: China im Westen, Philippinen im Süden, Ryūkyū-inseln (Japan) im Norden, Pazifischen Ozean im Osten. Es wies 2020 eine Bevölkerung von 23,57 Mio. ${ }^{30}$ Menschen auf. Die Bevölkerungsdichte in Taiwan liegt bei 651 Einwohnern pro Quadratkilometer.

[^13]
D.1.1 Klima und Natur

Taiwans Gelände ist von Nord nach Süd lang und von Ost nach West schmal. Die Längenund Breitengradkoordinaten sind $120^{\circ}-122^{\circ} \mathrm{E}, 22^{\circ}-25^{\circ} \mathrm{N}$. Taiwan hat zwei Klimaregionen. Der nördliche Teil hat ein subtropisches Monsunklima und der Süden ein tropisches Monsunklima. Der durchschnittliche jährliche Niederschlag in Taiwan beträgt etwa 2500 mm^{31}, was dem 305 -fachen des weltweiten Durchschnittsniederschlags entspricht. Die durchschnittliche Jahrestemperatur liegt bei 22 bis $23^{\circ} \mathrm{C}$. ${ }^{32}$ Im Winter ist die Windrichtung nordöstlich und im Sommer ändert sie sich nach Südwesten.

D.1.2 Naturkatastrophen- Taifun

Der Taifun wird auch als tropischer Wirbelsturm bezeichnet. Er ist der Hauptfaktor für das Klima in Taiwan und kann starken Wind und Regen im Land bringen. Der enorme augenblickliche Niederschlag kann leicht zu Katastrophen führen. Insgesamt 51 Taifune haben Taiwan in den letzten 10 Jahren getroffen, was bedeutet, dass es durchschnittlich 5 Taifune pro Jahr gibt. ${ }^{33}$

Abb.17: links: Taiwan Standort auf der Weltkarte. Rechts: Taiwankarte (wikimedia.org)

[^14]
D. 2 Projektziele

Laut der taiwanischen Energiepolitik ist sind Energiewende und Öko-Stadt wichtige Ziele. In dieser Arbeit sollte anhand eines theoretischen Entwurfsfalls die Kombination von Solardach und Dachbegrünung simuliert werden. Aufgrund der Gelegenheit einer Dachsanierung können Solaranlagen und Dachbegrünung installiert werden. Im Vergleich zu einem einzelnen Aufbau eines Solardachs oder einer Dachbegrünung ist es komplizierter, zwei verschiedene Technologien in einer mehrstufigen Form zu verbinden. Ziel ist es, ein Modell für beide Dachnutzungen zu finden, das an Taiwans Klimabedingungen angepasst ist und wie das ganze System höchstens leisten kann.

In diesem Entwurf sollten die folgenden Fragen beantwortet werden:

- Bei welcher Ausrichtung und welchem Neigungswinkel hat ein Solarsystem eine bessere Effizienz?
- Wie kann eine Pergola als alternative Trägerkonstruktion eines Solarsystems verwendet werden?
- Wie werden Solaranlagen in Bezug auf die Schattensituation angeordnet?
- Wie lassen sich extensive Dachbegrünung und Solaranlagen miteinander kombinieren?
- Wie gestaltet sich die Kosten-Nutzen-Rechnung?

(Die Planung befindet sich im Anhang)

E. Zusammenfassung und Ausblick

Nachhaltige und ökologische Stadtentwicklung ist zu einem internationalen Konsens geworden. Die taiwanische Regierung arbeitet ebenfalls aktiv auf dieses Ziel hin. Bei der Umsetzung dieser Solarenergiepolitik gibt es einige Probleme wie ungenügende Flächen und unerschwingliche Installationskosten.

Die vorliegende Arbeit mit einem Sanierungsprojekt hat gezeigt, dass die Kombination von Solarnutzung und Dachbegrünung als Idee mit hohem Potenzial für die Energiewende und ökologische Stadtentwicklung gesehen werden kann. Gleichzeitig kann das Geschäftsmodell Energiespar- Contracting eine Lösung der oben genannten Probleme sein. Grundeigentümer und Energieunternehmen können dadurch eine Win-Win- Situation bekommen.

Durch Solarsystem und extensive Dachbegrünung werden die ursprünglichen alten Blechdächer ersetzt. Die Berechnung der Stromerzeugung zeigt, dass das gesamte PVSystem 418.2 MWh pro Jahr produzieren kann. Diese direkt von der Sonne bezogene Energie kann nicht nur auf den Energiebedarf der Nutzer ausgerichtet sein, sondern auch Kohlenstoffemissionen reduzieren , welche sich auf etwa 220 Tonnen Kohlendioxidemissionen pro Jahr beläuft. Dies entspricht 430 Hartholzbäumen. Erwähnenswert ist, dass Anleger ihr Kapital in etwa 17 Jahren zurückerhalten können.

Dachbegrünung hat die Eigenschaften, die Gebäudetemperatur zu senken und den "Wärmeinseleffekt" (englisch: Urban heat island effect) zu verlangsamen. Die in dem Projekt insgesamt mehr als 1850 Quadratmeter hinzugefügte Grünfläche wird zu einem Gebiet mit niedrigen Temperaturen in der Stadt gerechnet. Durch die Schutzschicht der Dachbegrünung wird die Haltbarkeit des Daches verlängert, was wiederum die Kosten für Dachreparaturen reduziert. Darüber hinaus kann das bisher kaum genutzte Dach als öffentlicher Raum für verschiedene Aktivitäten verwendet werden. Zusammenfassend lässt sich sagen, dass dies
ein nachhaltiges Projekt ist, da es sich im Hinblick auf Ökologie, Gesellschaft und Ökonomie positiv auswirkt.

Dies gibt der Öko-Stadt-Entwicklung die Möglichkeit, voranzukommen. Diese Abschlussarbeit versucht, einen Weg aufzuzeigen, wie sich zwei verschiedene ElementeSolardach und extensive Dachbegrünung - zusammen planen lassen. Um die noch bestehenden Wissens- und Regelungslücken zu schließen, sollten Praxis, Wissenschaft und Politik weiterhin kooperativ zusammenarbeiten. Es bleibt zu hoffen, dass die Regierung in Taiwan die Erforschung der Technologie zur Anpassung an das Klima forciert, um dem Modell "Solaranlage und Dachbegrünung" zur weiteren Verbreitung zu verhelfen. Trotz vieler technischer Fragen auf der Umsetzungsebene birgt es hohe Potenziale.

F. Verzeichnisse

F. 1 Abbildungsverzeichnis

Abb.1: 2019-2025 Anteil der Stromerzeugungsstruktur in Taiwan (Bureau of Energy, Ministry of Economic Affairs, R.O.C)

Abb.2:2018-2025 Solarenergietrends von 2018 bis 2025 in Taiwan(Bureau of Energy, Ministry of Economic Affairs, R.O.C)

Abb.3: 2019 Stromerzeugungsstruktur in Taiwan(Eigene Darstellung)
Abb.4: Solarkreislauf(Planung von Photovoltaik-Anlagen, 2008 Frank Konrad S. 3)
Abb.6: Solarthermie und Photovoltaik (https://images.app.goo.gl/dGeMxZ5LvveTLWkX7)
Abb.7: Schema- Photovoltaik-Anlage
(http://janke-immobilien.de/neu/energieanlagen/photovoltaik/pv-detail.htm) (2.11.20)
Abb.8: Aufbau einer Solarzelle(https://www.solaranlage.de/technik/solarzellen) (2.11.20)
Abb.9:Der Aufbau eines Modules (https://www.solaranlage-ratgeber.de/)(3.11.20)
Abb.10: Modulwechselrichter
(https://www.shop-muenchner-solarmarkt.de/sma-sb-3600tl-21-wechselrichter.htm)(06.11. 20)

Abb.11:Drehstromzähler(https://stromzähler.eu/stromzaehler/drehstromzaehler/)(
(18. 01.21)

Abb.12: Schema zu Globalstrahlung(Eigene Darstellung)
Abb.13: Karte der Globalstrahlung von Links nach rechts: Thailand Deutschland und Taiwan (https://globalsolaratlas.info/map)

Abb14. : Grafik zu Flächenfaktor
(http://www.ing-büro-junge.de/html/photovoltaik.html)
Abb.15: Mögliche Verschattungen (Eigene Darstellung)
Abb.16: Synergieeffekte von Photovoltaik und Dachbegrünung (Eigene Darstellung)

Abb.17: links: Taiwan Standort auf der Weltkarte. Rechts: Taiwankarte (wikimedia.org)

F. 2 Tabellenverzeichnis

Tabelle. 1 Vergleiche Arten der PV- Module und ihre
Eigenschaften.(https://www.itwissen.info/Duennschichtsolarmodul-thin-film-solar-cell.html)
(Im Anhang)
Tabelle. 2 Definition einer geographischen Station(Meteonorn7.3 1991-2000)
Tabelle. 3 Monatliche Wetterwerte(Meteonorn7.3 1991-2000)
Tabelle. 4 Analyse- Ausrichtung und Neigungswinkel Süd mit Kurve mit Kurve (Eigene Darstellung)

Tabelle. 5 Analyse- Ausrichtung und Neigungswinkel Ost und West mit Kurve (Eigene Darstellung)

Tabelle. 6 Analyse- Verschattung Verhältnis- Auf Flachdach (Eigene Darstellung)
Tabelle. 7 Analyse- Verschattung Verhältnis- Auf Pergola (Eigene Darstellung)
Tabelle. 7 Analyse- Verschattung Verhältnis- Kompromiss (Eigene Darstellung)
Tabelle. 9 Pflanzplan Artenlist (Eigene Darstellung)
Tabelle. 10 Berechnung der Regenspende nach DIN 1986 (Eigene Darstellung)
Tabelle. 11 Kostenberechnung (Eigene Darstellung)

F. 3 Literaturverzeichnis

1. Mehner, Tuttaworn, Srisutam, \& Khusribanchong, 2018 S: 11.
2. Wirth, Aktuelle Fakten zur Photovoltaik in Deutschland, 2020 S. 5
3. Energieziel 2050, Deutsches umweltbundesamt, S. 22
4. Ministry of Economic Affairs,R.O.C. Energiebericht 2020a S. 5
5. Ministry of Economic Affairs,R.O.C. Energiebericht 2020a S. 6
6. Bureau of Energy, Ministry of Economic Affairs, R.O.C
7. Entdeckung der Photovoltaik.
8. https://de.wikipedia.org/wiki/Alexandre_Edmond_Becquerel
9. Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.10.
10. Wirkungsgrade der PV-Module. https://www.solaranlage-ratgeber.de/
11. Wirkungsgrade der PV-Module. https://www.solaranlage-ratgeber.de/ (2.11.20)
12. Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.12.
13. Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.12.
14. Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.18.
15. Wechselrichter der PV-Module. https://www.solaranlage-ratgeber.de/ (6.11.20)
16. Stromzähler https://www.solaranlage-ratgeber.de/ (6.11.20)
17. Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.4.
18. Meteonorm 7.3 (1991-2010) Berlin (Germany)
19. Meteonorm 7.3 (1991-2010) Bangkok (Thailand)
20. Meteonorm 7.3 (1991-2010) Tainan (Taiwan)
21. Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.9.
22. Manferd Köhler, Fassaden- und Dachbegrünung 1993 S. 237
23. Manferd Köhler, Handbuch Bauwerksbegrünung 2012 S. 14. 51
24. Manferd Köhler, Handbuch Bauwerksbegrünung 2012 S. 51

Anhang:

(Planungen von dem Entwurf für Dachsanierung)

Nummer	Plan
A - 01	Projektprofil
A - 02	Bestehender Lageplan
A - 03	Vorplanung der Sanierung
A - 04	Analyse - Abhängigkeit von Ausrichtung und Neigungswinkel
A - 05	Analyse - Verschattung
A - 06	Lageplan
A - 07	Dachbereiche - Typ 1 und 2
A - 08	Dachbereich Typ 1
A - 09	Dachbereich Typ 2
A - 10	Aufstellung - Solarmodule Boden
A - 11	Aufstellung - Solarmodule Pergola
A - 12	Aufstellung - Solarmodule Pergola
A - 13	Pflanzplan
A - 14	Be - Entwässerungspläne
A - 15	Visualisierung
A - 16	Planungsgrundlagen und Empfehlungen
A - 17	Kosten und Erträge - Berechnung

Hinweise:
ie Höhe dieses Wohngebiets ist eine Spitze an dieser
Stadtviertel. Die standortbedingte Verschattung wird
hauptsächlich durch das eigene Treppenhaus des
Gebäudes und Attika verursacht. Da sich die
ind die schattierten Bereiche von TYP1 und TYP2
unterschiedlich. Der verschattete Bereich von TYP2 ist etwas größer als der von TYP2, insbesondere im Winter Nachmittag.

Entwässerung Entwässerung system ist

Das bestehende Entwässerungssystem ist
Freispiegelentwasserung, und Geaale ist von der Mite
vorhandenen Gullys. Die Behandlung bei Notfall des
starken Regen besteht darin, Regenwasser direkt
außerhalb des Daches des Gebäudes abzuleiten
Sicherung gegen Windsog
Das Abhaben durch Windkräfte muss vermeidet werden. Berechnungen mit verschieden Tropensturm) und $51,00 \mathrm{~m} / \mathrm{s}$ (Maximum Taifun) zeigen, dass die Anordnung der Module nach DIN al um 90 cm von Attika nach innen versetzt werden.

Vorplanung Dachplan

1:200

[^0]: ${ }^{1}$ Energieziel 2050, Deutsches Umweltbundesamt, S. 22

[^1]: ${ }^{2}$ Ministry of Economic Affairs,R.O.C. Energiebericht 2020a S. 5
 ${ }^{3}$ Ministry of Economic Affairs,R.O.C. Energiebericht 2020a S. 6
 ${ }^{4}$ Ministry of Economic Affairs,R.O.C. Energiebericht 2020a S. 6

[^2]: ${ }^{5}$ Bureau of Energy, Ministry of Economic Affairs, R.O.C

[^3]: ${ }^{6}$ Entdeckung der Photovoltaik. https://de.wikipedia.org/wiki/Alexandre Edmond Becquerel (2.11.20)

[^4]: 7. Wirkungsgrade der PV-Module. https://www.solaranlage-ratgeber.de/ (2.11.20)
 ${ }^{\text {8. }}$ Wirkungsgrade der PV-Module. https://www.solaranlage-ratgeber.de/ (2.11.20)
 ${ }^{9}$ Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.12.
[^5]: ${ }^{10}$ Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.12.
 ${ }^{11}$ Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.12.
 ${ }^{12}$ Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.12.

[^6]: ${ }^{13}$ Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.18.
 ${ }^{14}$ Wechselrichter der PV-Module. https://www.solaranlage-ratgeber.de/ (6.11.20)

[^7]: ${ }^{12}$ Stromzähler https://www.solaranlage-ratgeber.de/ (6.11.20)
 ${ }^{13}$ Stromzähler https://www.solaranlage-ratgeber.de/ (6.11.20)
 ${ }^{14}$ Stromzähler https://www.solaranlage-ratgeber.de/ (6.11.20)
 ${ }^{15}$ Stromzähler https://www.solaranlage-ratgeber.de/ (6.11.20)
 ${ }^{16}$ Stromzähler https://www.solaranlage-ratgeber.de/ (6.11.20)

[^8]: ${ }^{19}$ Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.4.

[^9]: ${ }^{20}$ Meteonorm 7.3 (1991-2010) Berlin (Germany)
 ${ }^{21}$ Meteonorm 7.3 (1991-2010) Bangkok (Thailand)
 ${ }^{22}$ Meteonorm 7.3 (1991-2010) Tainan (Taiwan)

[^10]: ${ }^{23}$ Frank Konrad, Planung von Photovoltaik- Anlagen, 2.Aufl, 2008, S.9.

[^11]: ${ }^{24}$ Manferd Köhler, Fassaden- und Dachbegrünung 1993 S. 237

[^12]: 25. Manferd Köhler, Handbuch Bauwerksbegrünung 2012 S. 14.
 ${ }^{26}$ Manferd Köhler, Handbuch Bauwerksbegrünung 2012 S. 55.
 26. Manferd Köhler, Handbuch Bauwerksbegrünung 2012 S. 14
 ${ }^{28}$ Manferd Köhler, Handbuch Bauwerksbegrünung 2012 S. 51
[^13]: ${ }^{29}$ https://www.cwb.gov.tw
 ${ }^{30}$ https://www.cwb.gov.tw

[^14]: ${ }^{31}$ Central Weather Bureau, https://www.cwb.gov.tw
 ${ }^{32}$ Central Weather Bureau, https://www.cwb.gov.tw
 ${ }^{33}$ Central Weather Bureau, https://www.cwb.gov.tw

