
University of Applied Sciences Neubrandenburg

Geoinformatics

Development of an Information System for the

Management of GNSS Station Metadata using

GeodesyML

Bachelor Thesis

submitted by: Johannes Karl Kindermann

To Obtain the Academic Degree of

”Bachelor of Engineering” (B.Eng.)

First Supervisor: Prof. Dr.-Ing. Andreas Wehrenpfennig

Second Supervirsor: M.Eng. Markus Bradke

Submitted on 10.08.2022

URN: urn:nbn:de:gbv:519-thesis-2022-0262-2

Abstract

GNSS station metadata needs to be machine-readable due to changing demands of the user

segment and need for interoperability with other systems. We propose an information sys-

tem implemented as a web application for the management of GNSS station metadata that is

both interoperable and highly usable. It implements the GeodesyML standard for exchanging

geodetic metadata. The system is designed to be easily extensible and accommodate diverse

use cases. It outperforms comparable systems in key user experience metrics.

1

Acknowledgements

I would like to thank M.Eng. Markus Bradke and Prof. Dr.-Ing. Andreas Wehrenpfennig

for guidance during the making of this thesis. I am especially grateful for having had the

opportunity to work at GFZ Potsdam as an intern from July to December 2021. I would like to

thank my family and friends for being supportive during my studies.

2

Contents

1 Introduction 5

2 Global Navigation Satellite Systems 6

2.1 Operation . 6

2.2 The International GNSS Service . 8

2.3 GNSS Station Metadata . 8

3 GNSS Station Sitelogs 9

3.1 ASCII . 9

3.2 GeodesyML . 11

4 Analysis 14

4.1 User Stories . 14

4.2 Functional Requirements . 20

4.2.1 Inputs . 21

4.3 Non-Functional Requirements . 22

4.4 Technical Requirements . 23

5 Existing Systems 24

5.1 International GNSS Service . 24

5.2 EUREF Permanent Network . 25

5.3 GFZ German Research Centre for Geosciences . 26

5.4 Geoscience Australia . 26

5.5 Comparison . 27

6 Design 28

6.1 System Architecture . 28

6.1.1 Data Tier . 28

6.1.2 Application Tier . 28

3

6.1.3 Presentation Tier . 29

6.2 Database Schema . 30

6.2.1 Station Logs . 31

6.2.2 Stations and Networks . 32

6.2.3 Double Plus Codes . 32

6.2.4 Hardware . 34

6.2.5 Validation . 35

7 Implementation 36

7.1 Methodology . 36

7.2 Timeline . 36

7.3 Backend . 36

7.3.1 REST API . 37

7.3.2 GraphQL API . 38

7.3.3 Permissions . 39

7.3.4 GeodesyML . 39

7.4 Frontend . 40

7.4.1 Next.js . 40

7.4.2 TypeScript . 41

7.4.3 User Interface . 41

7.4.4 Major Packages . 41

8 Results 43

9 Conclusion 46

9.1 Business Processes . 52

4

Chapter 1

Introduction

Global navigation satellite systems (GNSS) play an essential role in many parts of society. Since

the first GNSS was made publicly available in 1995, this role has changed significantly. While

originally most applications of GNSS were in science or geodesy, over 60% of the total revenue

generated by GNSS over the next 10 years is estimated to come from consumer applications and

over 29% from road and automotive applications [1]. The increasing revenue from consumer

applications is a continued trend and also reflected in the revenue of added-value services

which is expected to grow by 11% annually [1].

To accommodate these use cases, GNSS data has to be findable, accessible, interoperable

and reusable, such that it can be processed by automated systems. For each of these properties,

metadata is a key factor. An important piece of metadata in GNSS is the sitelog, describing in

detail a configuration of a GNSS receiver and GNSS antenna. Sitelogs were introduced in the

early days of GNSS and, as a purely human-readable file format, do not facilitate automated

processing.

A proposed standard called GeodesyML is designed to solve this problem but lacks broader

adoption as few implementations exist. To increase adoption, there needs to be a system that

includes full support for GeodesyML but also includes all of the features in current systems

that manage GNSS station metadata with ASCII sitelogs. This way, station operators can be

motivated to switch station metadata to the GeodesyML format, which improves the infras-

tructure of important GNSS networks. This thesis is concerned with the development of such

a system.

5

Chapter 2

Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS) are satellite constellations that provide position-

ing, navigation and timing (PNT) services. As a large chunk of the data generated in total is

georeferenced, GNSS are an integral part of modern society. Applications of GNSS range from

personal navigation systems to high-precision surveying, precise timing and a multitude of

scientific applications.

2.1 Operation

The method underlying positioning with GNSS is the simultaneous measurement of the range

of four or more GNSS satellites to a GNSS receiver. These each determine the radius of a sphere

around a particular satellite, on whose surface the receiver is located. An intersection of four or

more spheres yields a singular point, thereby uniquely identifying the position of the receiver

in space.

There are several methods for measuring range to a satellite. In each case, the physical ob-

servable is a radio signal sent by the satellite. These radio signals have multiple components:

carrier wave, ranging code and navigation data. The carrier wave is a harmonic in the L band,

which ranges from 1 to 2 GHz in frequency. The ranging code is a periodic binary sequence of

pseudo-random noise and the navigation data is a binary sequence encoding useful informa-

tion about the satellite.

The first of these methods is measuring pseudorange. This is done by creating a replica of

a signal’s ranging code in the receiver and comparing it to the signal’s ranging code, thereby

determining the time offset of the signal, its travel time and ultimately range to the satellite.

The precision of this method is on the order of 10−1m.

The second method is measuring the phase of the carrier wave of the incoming signal. This

can be used to count the number of peaks in the carrier wave, which also determine range.

6

Figure 2.1: Method of positioning using GNSS under idealized conditions.

Precision of this method is on the order of 10−3m, but it is unstable in case of signal loss.

Both methods rely on the synchronization of the clocks of the satellite and receiver. Since

this is not given in practice, timing errors must be considered in the measurement of ranges.

The timing error of the satellite is broadcast to the receiver as part of a signal’s navigation

message. However, the timing error of the receiver adds an additional unknown quantity to

the range measurements. Assuming perfect conditions, measurements of three range quantities

would suffice to position the receiver. To account for the receiver timing error, an additional

fourth range must be measured.

For strategic reasons, there are multiple GNSS constellations. The major constellations are

GPS (USA), GLONASS (RF), Galileo (EU) and BeiDou (China). Each includes 20 to 40 satellites

to always provide line of sight to at least the minimum number of satellites required for PNT

at any point on the Earth’s surface.

Each GNSS is made up of three segments: the space segment, control segment and user

segment. The space segment comprises the constellation of satellites. The control segment

is responsible for maintaining the health of the system by monitoring broadcast signals and

uploading navigation data to satellites. It consists of a group of monitoring stations, ground

antennas and a master control station dispersed in the region covered by the GNSS. The user

segment consists of any other GNSS receivers used for both civil and military purposes.

7

2.2 The International GNSS Service

The International GNSS Service (IGS) is a worldwide organisation of self-funding agencies, uni-

versities and research institutions, such as the GFZ German Research Centre for Geosciences,

that pool the data of their permanent GNSS stations1. The IGS uses this data to provide prod-

ucts such as GNSS satellite ephemerides and clocks, coordinates of its constituent stations,

earth rotation parameters and atmospheric parameters. It also provides GNSS data for its sta-

tions. In addition to precise positioning, the data distributed by the IGS sees use in scientific

applications such as the realization of the International Terrestrial Reference Frame, monitoring

the deformation of the solid earth, monitoring sea-level change and climate change events as

well as producing ionospheric and tropospheric maps [2]. The IGS to date receives data from

512 stations from 350 member organisations.

At the highest level, it is comprised of the Governing Board making policy decisions and

the Central Bureau providing day-to-day management. The Governing Board maintains sev-

eral committees, such as the Infrastructure Committee. Data Centers provide access to IGS

data and products, where data is directly gathered from IGS Tracking Stations, and products

are provided by Analysis Centers operating on the data. In addition, the Governing Board

maintains several Pilot Projects and Working Groups. The Infrastructure Committee furthers

the development of GeodesyML in an internal task team.

2.3 GNSS Station Metadata

A GNSS station is described by its metadata. This is information such as how the station can

be identified, where it is located and what kind of hardware was installed at a specific time.

Besides being essential for the overall maintainability of a GNSS network, it is also used in the

post-processing of GNSS data. Post-processing is the method of improving raw observations

using data unknown at the time of measurement. Significant errors in GNSS measurements

include satellite clock and ephemeris error, atmospheric error, receiver noise and multipath.

Changes of receiver equipment and possible multipath effects are documented in a station’s

metadata alongside many other relevant data points. Having up-to-date knowledge of a sta-

tion’s metadata allows accurate post-processing and avoiding discontinuities in the time series

of a station’s measurements.

1A GNSS station is a GNSS receiver coupled to a GNSS antenna, alongside other hardware that is optional such
as meteorological sensors.

8

Chapter 3

GNSS Station Sitelogs

A document describing the metadata of a GNSS station is called a sitelog. The de facto stan-

dard for this purpose is a file format based entirely on human-readable text, the ASCII sitelog.

Originally introduced by the IGS for managing the metadata of its own stations, it has been

in use for more than 20 years [3]. Since there are disadvantages to a purely human-readable

approach, especially in terms of automating management of station metadata, there has been

an effort to introduce a machine-readable1 file format for the same purpose called GeodesyML.

3.1 ASCII

When the IGS was founded in 1994 and GPS as the first GNSS became fully operational in 1995,

machine-readable formats were not available or not considered for GNSS station metadata. The

Extensible Markup Language (XML) file format for example was started in 1996. In addition,

adoption of a binary format could have hindered contributions to IGS due to lack of software

and/or hardware on the part of station operators. This way, a format was chosen similar to

the Receiver Independent Exchange Format (RINEX) [6], then available in its second version

and based on ASCII. The chosen format was subsequently adopted by other GNSS networks

such as the EUREF Permanent Network (EPN). The IGS publishes a template [5] and a set of

instructions [4] for filling out a sitelog.

Initially, these documents were managed by hand, involving network administrators in

maintaining the metadata of every station in a network. Later, most organizations adminis-

tering GNSS networks transitioned to using web-based systems where station operators are

able to update metadata without other involvement. These include the IGS Site Log Manager

[7], EPN M3G [8], GFZ German Research Centre for Geoscience semisys [9] and Geoscience

1Machine-readable taking to describe a file format that is unambiguously readable. An ASCII sitelog can be read
and parsed by a computer, but for lack of validation not without ambiguity.

9

Name Description
0. Form Information on the current document: author, date,

etc.
1. Site Identification of the

GNSS Monument
Schemes by which station can be distinguished: four-
character ID, IERS DOMES number, etc. Description
of the monument including geology.

2. Site Location Information City, state, country, tectonic plate and ITRF coordi-
nates

3. GNSS Receiver Information History of installed GNSS receivers
4. GNSS Antenna Information History of installed GNSS antennas and radomes
5. Surveyed Local Ties Geodetic measurements to stations of other geodetic

techniques, such as SLR, VLBI, etc.
6. Frequency Standard Historical and current clocks references by the re-

ceiver, either internal or external. If external, options
such as a hydrogen maser or caesium atomic clock
apply.

7. Collocation Information Other geodetic techniques at this location
8. Meteorological Instrumenta-

tion
History of installed meteorological sensors: humid-
ity, pressure, temperature, water vapour or other. As
a station’s measurements are influenced by tropo-
spheric weather conditions, knowledge of these pa-
rameters is useful.

9. Local Ongoing Conditions
Possibly Affecting Computed
Position

History of interferences, multipath sources and signal
obstructions

10. Local Episodic Effects Possi-
bly Affecting Data Quality

Diverse events such as equipment malfunction or ac-
cumulation of snow

11. On-Site, Point of Contact
Agency Information

Organisation/department and people in charge of
physically managing station

12. Responsible Agency Agency responsible for metadata, if different to pre-
vious section

13. More Information Information such as data center and URLs for further
inquiry. ASCII picture of antenna and radome includ-
ing measurements.

Table 3.1: Sections of an ASCII sitelog [4] [5]

10

Australia GNSS Site Manager [10].

In connection to automated processing of ASCII sitelogs by such systems several issues

have become apparent with the file format. Since there is no mechanism to unambiguously val-

idate an ASCII sitelog, station operators often deviate from the intended format when entering

data. This poses a problem for automated systems relying on correctness and complicates the

already difficult process of parsing ASCII sitelogs. In addition, the standard as maintained by

the IGS is unversioned, so systems are unable to tell if an imported document conforms to the

latest standard [3].

In its 2021+ Strategic Plan [11], the IGS has advocated for standardization and interoper-

ability in multi-GNSS data and products. This includes GNSS station metadata and reference

frameworks such as the FAIR principles (findability, accessibility, interoperability and reuse of

digital assets) [12]. Making GNSS station metadata in its ASCII sitelog form adhere to these

standards would require significant changes of the format, such as adding licensing [13] [14].

3.2 GeodesyML

To address the shortcomings of the ASCII sitelog format, in 2016 the Australian and New

Zealand geodetic agencies proposed a new standard called GeodesyML2 with support by the

former3 IGS Data Center Working Group [15]. It is an application schema of the Geography

Markup Language (GML) itself implemented using the Extensible Markup Language (XML).

XML is a file format whose main purpose is serialization, i.e. to serve as an intermediary

format between two systems that have different internal representations of data. XML is also

a markup language and structures information in tags or elements. As this structure can be

defined by a strict grammar called a schema, an XML document can be validated against that

schema to test whether it is well-formed. This allows to avoid ambiguity in parsing XML doc-

uments, making them machine-readable. Since XML is a markup language, it is also human-

readable.

GML, as defined in the ISO 19136 standard, is an XML implementation of ISO 19107 Spatial

schema. It is designed for modeling, transport and storage of geographic data [16]. It provides

a rich vocabulary of primitive elements for representing geometry, coordinates, reference sys-

tems, time and others that can be used to create application schemas for a particular problem

domain such as geodesy. It deals with features, being the fundamental unit of geographic in-

formation [16]. An application schema only uses a subset of the vocabulary available in GML

and combines it with additional details from the problem domain.

2https://github.com/GeoscienceAustralia/GeodesyML
3Merged into the Infrastructure Committee.

11

Figure 3.1: GeodesyML builds on other standards, c.f. [17].

GeodesyML solves the problem of geodetic data and metadata often not being interopera-

ble, as is the case with ASCII sitelogs. Interoperability is defined by three principles [16]:

• The ability to find what you need when you need it;

• Once located, the ability to access and obtain what is needed;

• And after obtaining it, to be able to understand it and put it to good use.

Standards play a major role in providing interoperability. As such, GeodesyML builds on

standards that enable these principles.

Besides GML, important additional standards that GeodesyML builds on top of are ISO

ISO19115-1, ISO 19110 and ISO 19157. ISO 19115-1 Geographic information – Metadata – Part 1:

Fundamentals is foundational to the format. It provides many different elements for describing

the metadata of geographic datasets such as title, responsible party, reference system, file iden-

tifier and point of contact [16]. This metadata is a prerequisite for reuse and aids especially in

locating required data.

ISO 19110 Geographic information – Methodology for feature cataloguing and ISO 19157 Geo-

graphic information – Data quality provide more specific information about features and the qual-

ity of data than covered in ISO 191115-1 [17]. This way, they help to better obtain, understand

and use data.

GNSS station metadata is only a subset of GeodesyML. It also accommodates geodetic data

like positions, measurements and reference frames. Within the subset of station metadata,

GeodesyML stores additional information compared to ASCII sitelogs that also increases inter-

operability. See 3.2.

In contrast to ASCII sitelogs, GeodesyML follows a strict versioning scheme. It is currently

in version 0.5 and is seeing development by the IGS Infrastructure Committee with proposals

12

Element Description
siteContacts List of responsible parties for a station.
siteDataCenters List of data centers from which GNSS data by a station may be

obtained.
siteDataSource A responsible party from which GNSS data by a station may be

obtained.
DOI Digital Object Identifier
dataStreams Specification of a URL from which data may be obtained in a spe-

cific format and sampling interval. Also stores NTRIP mounts.
Relevant for RTK.

Table 3.2: Some of the additional information stored in a GeodesyML sitelog compared to an
ASCII sitelog. For a comparison between ASCII and GeodesyML sitelogs for the same station,
see systems that implement exports in both standards, such as [8].

such as [13]. With continued development, it is on track to be endorsed as an IGS standard. In

the future, GeodesyML may also be adopted by other geodetic techniques such as SLR, VLBI

and DORIS, as these use sitelogs similar to the GNSS ASCII sitelog. GeodesyML is general

enough to also accommodate these other techniques.

13

Chapter 4

Analysis

Systems analysis is an important part of the software development lifecycle in which facts are

gathered and requirements for a system are derived from these facts. The success of software

development projects is strongly linked with the quality of the work done at this stage.

4.1 User Stories

A user story is an informal, natural language description of features of a software system,

written from the perspective of an end user. An example of this could be: ”As a guest, I can

register, so that I can log in.” A user story is similar to a use case, but more general. Use cases

and functional requirements can be derived from user stories.

User stories can be organised in user story maps. A user story map is a grid diagram of

several user stories. The horizontal axis defines a narrative through the application that the

user may follow to achieve her goals. The vertical axis describes the generality of a user story.

The main business activities of users, being the most general, are aligned at the top. Below

follow the main narrative and more specific user stories that may depend on stories above.

User stories further down the vertical axis may be assigned to later iterations of the product.

In the diagrams presented here, the color of a note indicates its swimlane with the excep-

tion of yellow being used to indicate external responsibility. If notes are stuck together, one is

dependent on the other. An arrow indicates an additional dependency.

For the current system, the stories of guests and regular users, station operators, network

administrators and administrators were considered in user story maps. The Tasks swimlane

contains those user stories to be completed for the minimum viable product (MVP); the Sub-

tasks swimlane those for later iterations. The MVP is the minimally feature complete version

of a software to be used in a production environment.

Guests or regular users as shown in figure 4.1 can view public data. This includes public

14

Figure 4.1: User story map for guests and regular users.

networks, stations and codelist data. In addition to permitting assignment of permissions on

networks and stations via roles, both can be set to be generally public or generally private. This

is less relevant for public networks such as IGS but more relevant for networks not publicly

visible such as SAPOS. Codelist data1 are sets of values that are useful in the representation

of a station log. Examples include antenna and receiver hardware models, tectonic plates,

countries, etc.

A guest may create an account. Any created account must be validated by email and by

an administrator. Once completed, the user can manage her account details, agencies and API

keys. Agency membership is used to determine whether a user can change the details of an

agency, affecting station logs referencing that agency. In the future, agencies may also be used

to assign permissions on networks or stations automatically. The user can also create a network

and will be assigned network operator role for it on creation.

Station operators (SO) as shown in figure 4.2 are more privileged than regular users and can

manage stations and associated station logs. A station log is a format-independent abstraction

of a sitelog. The SO role includes the abilities to view, update, delete and manage the assign-

ment of roles for a station. The SO user story also includes main business objectives 2, 4 and 5

from the network administrator user story on a station level.

A SO can set the digital object identifier (DOI) and license of a station to be inherited by

logs for which these values are unset. These fields are required for reasons outlined in e.g. [13].

1Represented in GeodesyML by the CT CodelistCatalogue element.

15

Figure 4.2: User story map for the station operator role.

The SO can also request for a station to join a network, but does not have the ability to set the

master network of a station. Every station can only belong to a single master network. The

master network of a station is used to assign permissions to users authorized with the network

on every member station.

The ability to edit a station also allows the SO to edit the logs of the station, including

importing, exporting, editing, drafting and publishing of logs. As the primary use case of

the system is to update existing station logs, creation of ”empty” logs based on default values

specified by the master network is not part of the MVP. See figures 9.2 and 9.3 for a detailed

description of the process of drafting, updating and publishing a station log.

Network administrators (NA) as shown in figure 4.4 are responsible for managing a net-

work and its stations. NAs can create, view and delete stations in a network. For stations that

are part of a master network on which a user has the NA role, the user also has SO access. In

future iterations, an NA may request to assign a different network as the master network of a

station and for a station of the network to join another network.

An important part of the NA’s role is to control user access to the network. This is achieved

by creating and assigning roles with abilities from the set of ”view”, ”update”, ”delete” and

”manage users”. In addition to the ”network administrator” role of a network having every

permission, there could e.g. also be an ”auditor” role only having the ”view” permission. To

assign a role to a user, the user is invited to take up that role. The invited user may accept

or decline the invitation and it may also be revoked by a NA. See figure 9.1 for a detailed

description of the invitation process. Furthermore the NA may set the default visibility of the

16

network to be either public or private. When set to public, the ”view” permission of every role

on the network is ignored but not removed.

To better facilitate multi-network use, NAs are able to define criteria which the logs of

stations are to be validated against. This is important because different real-world networks

have different metadata standards. The IGS network for example requires all receiver hardware

listed in its station logs to be present in a predefined set of values considered valid2. The GFZ

network and others impose no such restrictions and also consider unregistered receiver models

to be valid. To aid in validation, each network is assigned an empty validation set on creation

to which an NA may assign existing validation. The NA may also select to inherit from one

or more existing validation sets, on top of which the validation set of the inheriting network

will be applied. This way, the strict validation set of the IGS network could be inherited by

another network and refined with additional rules instead of having to be rebuilt. The creation

of entirely new validation rules and the ability to manually set errors and warnings for a field

without an associated rule are not implemented as part of the MVP.

It is essential for NAs to stay up-to-date on the infrastructure of the network. This is

achieved with notifications in the system’s notification centre and with emails to the user’s

address. Should a station, i.e. its current log, fail validation, both channels are used to inform

NAs. In addition, NAs receive a system notification every time there are changes in a network

station or its logs. An email digest with configurable frequency and contents for such events is

outside of the scope of the MVP.

To make the system interoperable, i.e. work with both other instances of the same software

as well as other systems such as those in 5, NAs should be able to automatically synchronize the

changes made in one system with other systems to avoid having to perform changes multiple

times and risking input errors. To authenticate with other systems, NAs must be able to store

API keys of those systems. The ability to push updates to other systems is planned for a later

iteration, whereas the ability for other systems to pull updates from the current system is the

responsibility of the respective systems.

Administrators (AD) as shown in figure 4.3 manage the instance of the software (”system”),

its users, codelists and settings. Having control over other users and the ability to confirm

signups and requests of users to join an agency, it carries high responsibility and should be

assigned accordingly. Creating, editing and deleting of codelist values is exclusive to ADs.

They also choose when to generate GeodesyML codelist documents from these values to be

referenced in GeodesyML exports of station logs. An instance provides configurable settings

manageable by ADs for emails, API access and syndication feeds such as RSS or Atom. In

2https://files.igs.org/pub/station/general/rcvr ant.tab

17

future iterations, this will include settings for gathering GDPR consent from users via email

(relevant to systems with large user bases), publishing syndication feeds for private networks

and stations, and configuring when and how to prune outdated station logs.

Figure 4.3: User story map for the administrator role.

18

Fi
gu

re
4.

4:
U

se
r

st
or

y
m

ap
fo

r
th

e
ne

tw
or

k
ad

m
in

is
tr

at
or

ro
le

.

19

4.2 Functional Requirements

Functional requirements can be derived from the user stories and corresponding use cases.

Functional requirements are those that specify the behaviour of a system, as opposed to non-

functional requirements that specify aspects of the operation of the system in general.

Access to the system is provided to users both via a graphical user interface (GUI) as well as

an application programming interface (API) in the form of representational state transfer

(REST). In the GUI, users access the system’s data using list, map and tile/card views.

Responsiveness is the feature of a GUI to fluidly adjust to changes in screen layout. A respon-

sive web application has similar user experience on mobile, desktop and other devices.

The GUI of the system is responsive and delivers high user experience on a mobile de-

vice. A station operator may want to update her station’s metadata in the field, requiring

a responsive user interface.

Authentication is the act of verifying the identity of a user. The system provides mechanisms

for authentication in both GUI and API. Users are authenticated in the API using Bearer

tokens (”keys”). Optionally, the system integrates with existing on-premise authentica-

tion schemes such as LDAP.

Authorization is the act of verifying that a given user is privileged to execute an action. Users

are authorized based on group membership in a granular way. Groups include guests,

administrators, network administrators and station operators. Groups can be assigned

by administrators, network administrators or station operators on their respective level

of privilege.

Storage of data input into the system is realized in a relational database management system

(RDBMS) equipped with a geospatial extension. Such an extension allows management

and analysis of geographic data, effectively turning the RDBMS into a geographic infor-

mation system. The database is able to store multiple versions of metadata for a station

at the same time. This is used for the creation of sitelog drafts. Additionally, the database

is replicated to a hot standby server as a failover mechanism.

Validation is performed on any sitelog before it is input into and output from the system. If

a sitelog contains invalid formatting, it is not stored. Validation of sitelogs ensures that

no invalid metadata is ever published for a station. Validation rules are arbitrary in com-

plexity and can be defined globally or for the stations of a particular network. Examples

of validation rules for a particular network are the requirement for IGS stations to be

20

assigned a valid DOMES number and to be equipped with GNSS receiver and antenna

hardware recognized as valid by the IGS. An example of a global validation rule is the

requirement for receiver equipment to be registered with correct installation dates, i.e. no

GNSS receiver is ever registered as installed before a previous receiver is removed. Vali-

dation rules are subdivided into rules that cause errors and rules that cause warnings. If

a sitelog is validated with errors, it is not able to be published, but is able to be published

if validated with warnings only.

Updates are sent to other systems, such as those outlined in 5, when relevant changes are

made to the system’s data. Since standardization of the APIs of similar systems cannot be

expected, they will have to be wrapped by a unified interface. This feature can also be im-

plemented by a component external to the core system by using its REST API. Optionally,

updates can be received from other systems in the reverse case.

The API lets applications access a subset of the system’s features. This includes retrieving and

updating station logs, retrieving station pictures, retrieving information about receivers

and antennas including mean and individual phase center offset for receiver antennas,

retrieving metadata about specific networks and retrieving data about countries. The

API endpoints are documented using the OpenAPI specification and integration-tested.

The GUI contains views for different user stories: user view, station operator view, network

manager view and administrator view.

SEO is provided by adding correct HTML meta tags and a site map, enabling crawlers to

navigate the site more efficiently. In addition, the web site has high scores (greater than

90) in Lighthouse criteria performance, accessibility, best practices and SEO. The Core

Web Vitals are especially important for this purpose.

4.2.1 Inputs

Inputs to the system are accepted from various data sources. Most importantly, IGS sitelogs

both in ASCII and in GeodesyML form are able to be input into the system. In addition, the

system accepts inputs of the following data:

IGS rcvr ant.tab, antenna.gra contain valid GNSS receiver and GNSS antenna models as ac-

cepted by the IGS and their possible configurations.

ISO 3166 defines codes for the representation of names of countries and their subdivisions.

ANTEX (Antenna Exchange Format) files contain calibrations for GNSS satellite and receiver

antennas. Only data on receiver antennas is relevant to this system. Optional

21

Ocean loading describes a displacement of sea-adjacent land mass by the elastic response of

the earth’s crust to ocean tides, thereby influencing the position of GNSS stations. Data

for the correction of this effect is available. Optional

Site pictures

Logs of station visits to potentially record immediately any changes made to a station during

a visit. Optional

Tectonic plates data based on the NNR-MORVEL56 [18] model.

Networks data. This includes networks with public access such as IGS as well as networks

with private access such as SAPOS.

4.3 Non-Functional Requirements

Non-functional requirements, also called quality requirements, specify aspects of the operation

of the system in general.

Reliability and availability are provided by database replication. A hot standby database

server runs in parallel with the main server and is switched into operation should that

server fail. This ensures there is minimal downtime. In addition, backups of the database

are performed daily. The source code of the application is hosted on a different server in

an instance of the version control software Git, and deployed to the application server.

Extensibility describes both the ability to extend a system as well as to refactor existing code in

a system. Extensibility is given by adherence to standard practices during development

and by providing developer documentation. There is no way to add plugins to the system

or extend it at runtime.

Browser Independence is required as users and station operators are spread across the globe.

Internationalization and localization are provided in all but translations. The system is

not translated to a language other than English. This is similar to comparable systems, as

English is highly prevalent in the field.

Scalability and Efficiency are required to handle a steadily growing number of stations to be

stored in the system. The database schema must hence be efficient and based on the needs

of access via the GUI and API.

22

Usability is key to ensuring user retention. The web application should be easy and self-

explanatory to use. Having a straightforward visual hierarchy ensures that the appli-

cation is easy to understand. Accessibility criteria such as sufficient contrast between

content and background or screen reader labels for unlabeled buttons benefit users in

general. In case a part of the application has potential to be confusing and cannot be

changed, help is provided.

4.4 Technical Requirements

The PHP-based web framework Laravel3 is used to implement the API. The software utilizes

open-source software components and the source code is eventually released under a permis-

sive license. The service is accessible from anywhere in the world.

3https://laravel.com/

23

Chapter 5

Existing Systems

Different web-based systems exist for the management of GNSS station metadata. The capa-

bilities of every system are according to the maintaining organizations’ needs and there is no

standard or ”one size fits all”.

5.1 International GNSS Service

Figure 5.1: SLM user interface for viewing a sitelog.

The International GNSS Service provides the Site Log Manager (SLM) service at [11]. It was

designed to assist station operators of stations contributing to the IGS with updating ASCII

sitelogs of these stations.

It systematically parses uploaded ASCII sitelogs, validating them in the process. As a re-

sult of validation, sitelog fields are marked as ”error” when there is a violation of sitelog syntax

and as ”preferred” when a field is empty that does not constitute an error. Station operators

are then prompted to fix these errors/warnings without involvement of the IGS network ad-

ministrator1. SLM further allows station operators to save partial information and submit their

changes on confirmation.
1The name of the position at the IGS is Network Coordinator.

24

Station metadata is saved in a MySQL database. From this database, other products rele-

vant to the IGS are generated, such as SINEX files, lists of the network’s stations and equipment

and pictures of network stations. SLM however does not facilitate access to metadata as the ser-

vice itself is access-restricted and metadata is instead published via FTP. To date, 148 agencies

have registered with SLM and metadata of more than 750 active, former and proposed stations

is stored in the system.

Since the system was originally built to target version 5.0 of the PHP programming lan-

guage, which stopped receiving support on 01.01.2019, a new system SLM 2.0 is being built

for the same purpose but utilizing an updated technology stack, consisting of MySQL, Python

and the Python framework Django. It is set to enter operation in 2022. The source code of

the system will be made publicly available under an open-source license. It is designed to be

extensible, so that other network administrators can deploy the system for their own purposes.

In addition to feature parity with the previous system, it will include a REST API and support

for GeodesyML sitelogs.

5.2 EUREF Permanent Network

Figure 5.2: M3G user interface for viewing a sitelog.

Similar to the IGS, the EUREF Permanent Network (EPN) is a network of permanently oper-

ating GNSS stations. It was created in 1995 with the primary goal of supporting and improving

the European Terrestrial Reference System (ETRS89) and successive realizations. Metadata for

stations that are part of EPN is maintained in the Metadata Management and distribution sys-

tem for Multiple GNSS Networks (M3G) at [8]. M3G is developed and maintained by the Royal

Observatory of Belgium. To date, it contains metadata on over 4916 stations and in addition

to EPN also manages other networks such as EPOS and EPN densification which are closely

aligned with EPN.

25

5.3 GFZ German Research Centre for Geosciences

Figure 5.3: semisys user interface for viewing a sitelog.

The GFZ German Research Centre for Geosciences maintains a network of 55 permanent

stations throughout the world. It is an important contributor to the IGS with 24 of those sta-

tions. The Operational Data Center group at GFZ also processes positioning data from over

800 additional stations in the IGS, EPN and SAPOS networks. As such, it maintains the Sensor

Meta Information System (semisys) [9] for managing metadata. The system was initially devel-

oped in 2012 [19] and offers similar features to the IGS SLM. Data of the application is stored

in a PostgreSQL database. The web interface was built using PHP and jQuery.

5.4 Geoscience Australia

Figure 5.4: GNSS Site Manager user interface for viewing a sitelog.

Geoscience Australia (GA) is an agency of the Australian government and likewise an im-

portant contributor to the IGS with 36 stations. It maintains approximately 1500 stations in

26

several networks across the Australian region and South Pacific. In contrast to other systems,

the solution used by GA [10] is open-source2. The web interface was built using the Angular

framework.

5.5 Comparison

Table 5.1: Comparison of existing systems for GNSS station metadata management.

SLM SLM
2.01

M3G semisys GSM Proposed1

Version Control �� �� �� � � �
GeodesyML Import � �2 � � � �
GeodesyML Export � �2 � � � �
Multi-Network � � � � �� �
Validation � � � � � �
Open-Source � � � � � �
� Fully implemented
�� Partially implemented
� Not implemented

The systems can be evaluated by different criteria and contrasted with the system proposed

here. A system is considered to partially implement version control if it allows saving of un-

published changes. It fully implements version control if several versions of a station log can

be stored simultaneously. Version control is closely related to drafting. Systems are considered

to support multi-network use cases if different networks can reside in the same system with

different station assignments, validation rules and user permissions. A system implements

validation if more fine-grained checking than required and preferred is supported.

2https://github.com/GeoscienceAustralia/GNSS-Site-Manager
2In development
2Not part of MVP

27

Chapter 6

Design

6.1 System Architecture

The system as defined by the requirements follows a multitier architecture. A multitier ar-

chitecture is most commonly made up of physically separated presentation, application and

a data tiers. Each tier is a black box that communicates with adjacent tiers via well defined

interfaces. The system also makes use of the client-server model, in which an entity called a

server provides services and resources that are requested by a client.

6.1.1 Data Tier

The data tier wraps mechanisms to access and persistent the data of the system in an API

accessible to the application tier. Ideally, this is done without creating dependencies on the

internal structure of the data tier. In the current system, the data tier can be realized by a single

database management system, interfacing with the application tier via SQL. This tier can be

expanded if a specific caching solution such as Redis is required in the future.

As per the functional requirements of the system, a relational database management system

is used for data storage. Per the technical requirements, focus is placed on open source software

components. There are many popular open-source RDBMSs available. PostgreSQL with the

PostGIS extension was chosen. It holds the second-highest market share among open-source

RDBMSs [20].

6.1.2 Application Tier

The application tier runs the business logic of the system and moves data inbetween the pre-

sentation and data tiers. As per the technical requirements, the Laravel PHP framework is used

on a PHP application server such as Apache. It interfaces with the presentation tier via a REST

28

API.

6.1.3 Presentation Tier

The presentation tier is the topmost tier of the application and provides the interface by which

users engage with the system. There are many different options for the architecture of this

tier. The standard in web development has been to dynamically generate HTML code to be

displayed in a browser when a request is sent by a user. This is usually done on the same

server that implements the application tier. In this case, the server often follows an internal

architecture called model-view-controller (MVC) to separate the concerns of different tiers.

An alternate approach is to separate the presentation logic from the application server. To

do so, the application server does not return web pages but instead resources in a standard

exchange format such as JSON or XML. If the interface adheres to additional constraints, it

is called a representational state transfer (REST) API. The presentation logic is then part of a

different component, often a JavaScript application running in a user’s browser.

It is common for such an application running the browser to request resources from the

application tier independent of the page that is currently being displayed. The page is then

dynamically generated in the browser and displayed to the user. This type of application is

called a single-page application (SPA).

Advantages of this approach include that different application and presentation compo-

nents can make use of the same interface. A program automatically importing sitelog doc-

uments into the system could use the same API that the presentation tier uses. In addition,

because page reloads are avoided in the browser, there is improved speed and user experience

compared to web applications using server-side generated pages.

Disadvantages include that the application must be downloaded in its entirety the first time

it is used and users must have the resources to do this. Furthermore this type of application

naturally has poor search engine optimization (SEO). SEO is a measure of how highly search

engines rank a website and depends on factors such as performance and accessibility. Search

engines employ crawlers to determine these metrics and to index pages. Crawlers do not inter-

act with JavaScript, relying on markup only. SPAs typically do not contain any markup, since

everything visible to a user is stored in memory at runtime, making it difficult for SPAs to have

high SEO. This can be partially alleviated by using XML sitemaps.

In the case of the current system, the presentation tier is a single page application (SPA)

implemented in React. React is a popular JavaScript library for building user interfaces. It has

a strong community, and the ability to develop SPAs quickly and efficiently is one of its main

benefits.

29

Figure 6.1: Application architecture as component diagram. Data and application tiers are
grouped in the ”Backend” frame, while the presentation tier is in the ”Frontend” frame.

To address the problems of SEO and initial load time, a framework called Next.js is used

alongside React to render static markup for React components at build time. When a user

or crawler initially enters the application, it is served the generated static markup from the

Next.js web server. After the markup is loaded, it is made interactive (hydrated) using JavaScript

code. The application then transitions to being single-page and browser only. Besides enabling

crawlers to index the site, this also yields better largest contentful paint (LCP) time for users

compared to pure SPAs, a metric that measures the loading performance of a site.

6.2 Database Schema

A relational database system is a software system that enables users to define, create, control

and maintain access to a relational database [21]. Fundamental to relational databases is the

relational model. It organizes data into one or more tables of columns and rows. Each table

row is uniquely identified by a table-fixed tuple of values called a primary key (PK) and other

tables may contain references to it as a foreign key (FK). In addition to values of each row having

table-fixed data types such as number, date or piece of text, they may be marked as nullable

(N), where null indicates the absence of a value. A specific database’s structure is described by

a realization of the relational model called a database schema.

The main purposes of a database are efficiency in storage and retrieval of data and main-

tenance of data integrity. This includes maintaining accuracy and consistency of stored data.

In addition to integrity constraints such as primary and foreign keys, database schemas are

normalized to ensure data consistency. The goal of normalization is to reduce duplicated data as

much as possible, such that when a change occurs in the data modeled by the system, a mini-

30

station_logs
PK id
U uuid
N created_at
N updated_at
N valid_at
N type
FK,N user_id
N prepared_by
N drafted_at
FK,N drafted_from
N published_at
FK,N license_id
FK identifications_set_id

geog
geom
city

N state
N location_notes
FK country_id
FK,N tectonic_plate_id
N url
N url_map
N url_horizon_mask
N url_diagram
N pictures
N notes
N doi
FK on_site_agency_id
FK,N responsible_agency_id
FK,N data_center_id
FK,N data_center_alt_id
N more_information_url
N more_information_notes
FK station_id

drafted_from

Geodetic
coordinates

Cartesian
coordinates

stations
PK id
N created_at
N updated_at
N,U double_plus_code

status
is_private

FK,N license_id
FK,N network_station_id
N doi

network_station
PK id
N deleted_at
FK station_id
FK,U network_id
N,U nine_character_id
N joined_at

networks
PK id
N created_at
N updated_at

name
U abbreviation
N description
N is_permanent

is_private
N doi

Figure 6.2: ERD of the station logs, stations, network station and networks tables.

mum number of changes have to be made within the system to maintain its accuracy. There are

varying degrees of normalization, each supplying the relational model with a different set of

constraints of varying strictness, as normalization comes at the cost of efficiency. In the current

database schema, tables were normalized up to the third normal form.

6.2.1 Station Logs

For a high-level overview of the system’s database schema, it is useful to consider the model

of a station log, being central to the operation of the system. Station logs are represented by

the station logs table and identified in the system with a universally unique identifier (UUID).

They bear a large number of relations to other tables that are used to represent the contents

of a sitelog as outlined in 3.1 and 3.2. A superset of the information contained in an ASCII

sitelog and a subset of that additionally possible in a GeodesyML sitelog is stored in the current

schema.

A station log is many-to-one related to stations, tectonic plates, users, licenses, identification

sets, countries, organisations (via data center and alternate data center) and agencies (via on-

site agency and responsible agency). It is many-to-many related to agencies via third party

31

agencies. Inversely, it is one-to-many related to surveyed local ties, station sensors, station

antennas, station receivers, collocations, local ongoing conditions, frequency standards, other

instrumentations and local episodic effects.

Each station log is associated with a single station, for which it represents a snapshot in

time of that station’s metadata. This is in contrast to previous systems that did not separate

the notions of a station log and a station, directly associating a station with its metadata and

making it difficult to track changes of a station’s metadata over time. Separating them allows

adding a drafting and publishing mechanism for station logs with relative ease. A station log is

considered to be a draft if its published at field is null. A station has many logs, some of which

can be drafts.

6.2.2 Stations and Networks

Every station belongs to one or more networks via the network station pivot table. A standard

way to identify stations as used in the IGS has been the Nine-Character ID of a station, seeing

widespread usage. The Nine-Character ID of the main station at GFZ Potsdam for example is

POTS00DEU. This is composed of a four-character string naming a station (”POTS”), a mon-

ument number (”0”), a receiver number (”0”) and an ISO 3166-1 alpha-3 code, identifying the

country a station is located in. However, this identifier is only unique within the IGS network

and there are examples of different stations having the same Nine-Character ID outside of it.

To address this issue, the Nine-Character ID of a station is scoped to a particular network by

storing it in the network station pivot table.

One of the networks of every station is its master network. A master network assigns per-

missions to users authorized with the network on every member station. GFZ contributes 24 of

its 55 permanent stations to the IGS. The master network in this case is GFZ, having 55 stations,

24 of which are also part of the IGS network.

6.2.3 Double Plus Codes

Part Description Regex

9F4M93H8+ Length-8 plus code defining bounding box
with 275 m side length at the equator

[2-9CFGHJMPQRVWX]{8}\+

GNS+ Identifier for the geodetic method [A-Z]{3}\+

001 Identifier of a station within the bounding
box

(?!000)[0-9A-Z]{3}

Table 6.1: Structure of a double plus code by example of 9F4M93H8+GNS+001 (POTS00DEU).

32

Figure 6.3: Bounding box of 9F4M93H8+GNS+0011.

The double plus code of a station is a novel application of Google’s Open Location Code

to the domain of GNSS stations developed within this project. It may be used as an alternate

identifier to a station’s id field. Open Location Code is a geocode system for identifying an

area anywhere on Earth 2 and was specifically designed for use in areas where there is no street

addressing. Codes created using this system are called ”plus codes”. Since currently no identi-

fication scheme exists for stations of geodetic and other scientific methods that is unique across

networks, easy to obtain and having general consensus, a method using the Open Location

Code can be applied in pursuit of these goals.

Plus codes are a variable-length sequence of characters from a set of 20 which consists of

selected letters and digits. Characters with potential to cause ambiguity are purposely omitted

from the set. Alternating elements encode latitudes and longitudes respectively in WGS 84

coordinates, where each additional pair divides the bounding box defined by the previous into

a 5 by 4 grid. A plus code therefore acts as a spatial partitioning tree. If the code is longer than

8 elements, a + character is added after a length of 8 to distinguish the code from regular postal

addresses.

Double plus codes consist of a length-8 plus code, an identifier for the geodetic or scientific

method and a length-3 identifier within the bounding box defined by the plus code, separated

by + symbols (see 6.1 for an explanation by example). This way, every geodetic or scientific

method can assign up to 46.655 unique stations within the specified bounding box. Considered

geodetic methods are GPN (GNSS), GLR (SLR), GDO (DORIS) and GVL (VLBI). The current

2https://plus.codes/

33

station_receivers
PK id
N created_at
N updated_at

serial_no
N elevation_cutoff_setting
N temperature_stabilization

installed_at
N removed_at
N notes
FK receiver_id
FK,N firmware_id
FK station_log_id

receivers
PK id
N created_at
N updated_at
N igs_model
U manufacturer_model
N manufacturer_part_number
N description
N maximum_satellites
N released_at
N url_datasheet
N url_image
N is_geodetic

is_valid
is_single_signal

FK manufacturer_id

satellite_systems
PK id
N created_at
N updated_at
U abbreviation
N name

signals
PK id
N created_at
N updated_at
U name

frequency
N description
FK satellite_system_id

satellite_system_station_receiver
PK id
FK satellite_system_id
FK station_receiver_id

manufacturers
PK id
N created_at
N updated_at
U name
N abbreviation
N url
N description
FK,N country_id

receiver_signal
FK receiver_id
FK signal_id

Figure 6.4: ERD of station receivers and related tables.

system is meant to serve as a reference implementation for double plus codes and to help their

adoption by providing a simple to use service for assignment of these codes.

Advantages of double plus codes include easily being able to determine spatial proximity

of stations. Since the code is hierarchically structured based on location, stations that are physi-

cally close will be close in an alphabetically sorted list. This is in contrast to other identification

methods such as Nine-Character ID or IERS Domes Number which reference administrative

regions.

6.2.4 Hardware

Station hardware is stored in association with station logs. A station log has many receivers, an-

tennas, frequency standards and meteorological sensors, represented by the station receivers,

station antennas, station met sensors and frequency standards tables. A receiver installed at

a station (station receiver) references a receiver model (receiver). A receiver model is then as-

sociated with a manufacturer. Installed antennas and receivers are stored with the same table

structure. Every model that a station log is one-to-many related to is stored in a similar way.

34

networks
PK id
N created_at
N updated_at

name
U abbreviation
N description
N is_permanent

is_private
N doi

network_station_validation_set
PK id
FK network_id
FK station_validation_set_id

priority INTEGER

station_validation_rules
PK id

field CHARACTER VARYING(255)
N relation CHARACTER VARYING(255)

rules JSON
N messages JSON

station_validation_sets
PK id
U name

station_validation_rule_set
PK,FK station_validation_rule_id
PK,FK station_validation_set_id

severity CHARACTER VARYING(255)

Figure 6.5: ERD of tables related to validation of station logs.

6.2.5 Validation

Validation of station logs is an important part of the system. The networks that a station belongs

to provide validation rules for the logs of the station, stored in the station validation rules

table. A validation rule consists of a field, a relation, rules and messages. Field is the name of

an attribute of a model to be validated. Relation is a string identifying how the model to be

validated is related to a station log, e.g. ”stationReceivers.receiver” if receiver models are being

validated. Rules is a JSON-encoded array of Laravel validation rules3 to be applied to the field.

Finally, messages is a JSON-encoded associative array of rule names to human-readable strings

describing the validation error, which can be used to explain validation errors on the frontend.

Validation rules are aggregated by validation sets via a pivot table containing a severity for

each rule. Currently, values ”error” and ”warning” are used. Based on a rule’s severity, its

error message can be shown differently on the frontend. Validation sets are in turn attached to

networks via a pivot table containing a priority for each set. Priorities are used to choose which

rule to apply when multiple validation sets attached to a network contain rules on the same

field. In this case, it is the rule whose validation set has a higher priority on the network.

3https://laravel.com/docs/9.x/validation#available-validation-rules

35

Chapter 7

Implementation

7.1 Methodology

For the development a framework similar to Scrum was adopted. Scrum is a widely used

project management framework for small teams where project goals are broken down into

time-boxed iterations called sprints. These are typically two weeks in length, every day of

which a short stand-up meeting is held. At the end of each sprint lies a review to demonstrate

the work done and a retrospective to reflect on the process. Each team consists of a Scrum

master and several developers, where the Scrum master mediates between the product owner

and the developers.

In the current project, the team size was limited to one person. For this reason, no daily

stand-up meetings were held, but regular communication was provided via the project man-

agement platform Asana and the GFZ-internal instance of the source code host GitLab. Review

meetings were held on a weekly basis to discuss changes made and receive additional input.

This way, it was possible to adapt to changing requirements, such as proposed changes in the

GeodesyML format. A Kanban board was used to keep track of bugs and proposed features.

7.2 Timeline

Work on the current version of the project was started in late February 2022, with an expected

completion date of the minimum viable product (MVP) in August 2022.

7.3 Backend

Work was initially started on the components in the backend part of the application, consisting

of database and application server components. As per the technical requirements, the PHP-

36

based web framework Laravel 1 is used to implement the application server.

To set up the development environment, a component of the Laravel software ecosystem

called Laravel Sail was used. It is a frontend to the popular containerization service Docker.

Docker is a daemon that builds and runs containers in which software runs in isolation from

the rest of the system. Containers are similar to chroot jails but also have cgroups and net-

works separate from the host. Containers are built upon images which define the initial state

of a container’s file system. Laravel Sail automatically creates these containers as required by

an application. Advantages of a containerized approach include reproducibility of the devel-

opment environment, which enables other developers to quickly set up a local instance of the

software. Containers are not typically used in production, where software is ran on bare metal

instead. For the current system, containers were created for PostgreSQL and for Laravel itself

running on an Apache HTTP server.

Laravel is a highly object-oriented framework and conveniently provides an object-relational

mapper (ORM) called Eloquent for interacting with different DBMSs. An ORM is responsible

for representing tables in a database as classes and subsequently rows of those tables as objects

in an object-oriented environment. By utilizing the ORM, little to no SQL code as the usual

interface to a DBMS had to be written during development, positively impacting developer

productivity.

Laravel provides additional facilities closely connected to Eloquent for the creation of ta-

bles. The definition of a table schema is called a ”migration” in Laravel, whereas a class filling

a table with values is called a ”seeder”. Both can be used together with the ”artisan” command

to automatically drop all tables in a database, create new tables and fill them with values, mak-

ing database state easily reproducible. This also requires no SQL code. These facilities were

used to create migrations and seeders for all the tables required by the application. Classes

were created for use with the ORM corresponding to select tables.

7.3.1 REST API

An API is considered to be RESTful if it adheres to the interface standards defined by REST. In

practice, this means that correct HTTP verbs are used to interact with server state and server

state is expressed in terms of resources. The HTTP specification defines 9 verbs, the most

important of which are GET, POST, PUT and DELETE. A resource is anything that has an

identifier (URI). To illustrate, an API that requires clients to make POST requests to obtain a

resource is not RESTful, as POST requests are defined to not be idempotent, i.e. yield the same

result on successive requests. In such a scenario, a client could not be sure that the state of the

1https://laravel.com/

37

server remains unchanged.

Laravel is originally a model-view-controller (MVC) framework. In an MVC architecture,

the controller receives input from a client and passes it to the model managing the data of the

application. The model then updates the view, which renders a representation of the model

and is returned to the client. Since the system’s architecture separates the frontend and the

backend of the application, only minimal use is made of Laravel’s view components. Laravel

provides facilities called resource controllers for bulk definition of routing related to resources

in the sense of REST. These are classes that implement a subset of the index, store, show, update

and destroy methods, which are mapped to the corresponding HTTP operations and assigned

URLs under the prefix of the resource. Resource controllers were used to implement the REST

API as defined in the requirements and used on the frontend.

The REST API features two authentication schemes. As per the requirements, authentica-

tion with Bearer tokens is supported. Requests coming from the frontend are authenticated

via session cookies instead. Both authentication schemes are implemented using Laravel Sanc-

tum2. Laravel allows the definition of global and route-specific middleware stacks. A middle-

ware stack is a list of objects that each perform operations on a request object before it is passed

to the next object in the list. This is similar to the chain-of-responsibility design pattern. Sanc-

tum provides middleware for extracting tokens and session cookies and authenticating a user

with them before a request reaches the handler method of a target controller.

7.3.2 GraphQL API

GraphQL is a schema for the definition of APIs similar to REST. It was developed by Meta

(formerly Facebook) and released as open-source in 2015. The main differences between REST

and GraphQL are that GraphQL only sends HTTP requests to a single URL endpoint using

the POST verb, identifying resources using types and fields of those types instead. It uses a

special query language to achieve this. Similar to standard REST APIs, requests and responses

are encoded as JSON. Advantages of using GraphQL include type safety in both requests and

responses. Disadvantages include the added complexity of having to maintain the schema

defining the types used by a GraphQL API.

Early in development, GraphQL was considered for implementing the API but ultimately

not used in favor of REST. Within the scope of the project, a PHP package3 was developed

for use with Laravel to generate GraphQL schemas automatically from ORM classes (Laravel

Eloquent models). A GraphQL API may still be added in future iterations, especially for better

2https://github.com/laravel/sanctum
3https://packagist.org/packages/brausepulver/laravel-eloquent-to-graphql

38

(a) Filter and map of stations. (b) View of the logs of a station.

Figure 7.1: Examples of pages on the frontend.

managing of complex queries.

7.3.3 Permissions

Permissions are implemented using roles and abilities on those roles. A user obtains permis-

sions by being assigned roles. A PHP package called Bouncer 4 was used to bootstrap the

implementation. Bouncer does not natively support restriction of roles to specific models, such

as restricting a ”network administrator” role to a single network, which is required, since every

network’s roles must be isolated from those of other networks. This was implemented by using

the ”scopes” feature provided by Bouncer and setting the scope of all roles restricted to a model

to that model’s name and its id. Passing a ”scope” to Bouncer then restricts any authorization

tests to consider only those roles and abilities within the given scope.

7.3.4 GeodesyML

Since GeodesyML is treated as an interchange format, the internal representation of station

metadata in the current system is only partially modelled after the schema. Conversion from

the internal representation to GeodesyML happens using the SimpleXMLElement class of the

PHP standard library. Using SimpleXMLElement, a GeodesyML document is built up incre-

mentally by adding children to a DOM tree. It can then be validated and exported as an XML

string.

39

7.4 Frontend

The frontend was implemented in React5. React is a popular library for building users inter-

faces both in the browser and on mobile devices. React is maintained by Meta and was initially

released in 2013. React is most often used in SPAs, which is also the case for the current system.

In an SPA, only a single page is requested from a server during a session, although often SPAs

provide a similar user experience to traditional web applications with many pages.

7.4.1 Next.js

The foundation of the frontend application is a framework called Next.js6, which adds many

additional features on top of React that make development more similar to a traditional web-

application, such as file-system routing, static generation and server-side rendering.

React applications typically go through a process called building before being ran in produc-

tion mode. Internally this minifies the code, making it as concise as possible, and transpiles it to

a version of JavaScript supported by all target browsers. At this stage, Next.js also generates

static markup for every page. When a user loads a page in the browser that is part of a Next.js

application, she is first served this static markup which is then hydrated with JavaScript.

If a page requires external resources to show much of any content at all, this is not particu-

larly useful. Next.js provides two methods of hooking into the process of generating markup

for a page. In both, a page defines its data requirements in a separate function, which is then

executed by Next.js when markup is being generated. This way, dynamic data can be included

in the markup generated for a page.

The first of these methods is static generation (SG). SG happens at build-time. In addition

to defining its data dependencies, a page also defines the space of possible values for dynamic

components in its path. SG is used for pages whose contents rarely change, as markup is only

regenerated when the application is built again. To make SG more dynamic, it can be used

together with incremental static regeneration (ISG), in which the Next.js server provides an

endpoint that triggers a regeneration of the static markup of a page when a request is received.

Server-side rendering (SSR) is the second of these methods. It is similar to static generation

but happens on every request. SSR is only used when pages need to be pre-rendered for a

specific purpose and the dynamic data required cannot be known in advance, as otherwise

client-side fetching of dynamic data may be used instead.

The current system uses static generation for public-facing pages that rarely change, such

4https://github.com/JosephSilber/bouncer
5https://reactjs.org/
6https://nextjs.org/

40

as the landing page, news articles and informational pages. For all other pages, client-side data

fetching is used instead.

7.4.2 TypeScript

The frontend was implemented entirely in TypeScript, a strictly syntactical superset of JavaScript

that enhances it with static types. It was developed by Microsoft and first released in 2012.

Static type checking aids in finding bugs and is especially relevant for large applications like

the current system. TypeScript is dissimilar to other statically typed languages such as C++ or

Java in having complete type erasure at runtime. While other languages retain some notion of

the type of a value, TypeScript is transpiled to JavaScript at build-time, which has no concept

of types beyond primitive values and objects.

7.4.3 User Interface

The user interface was built using a component library called MUI7 that implements the Ma-

terial Design 2 guidelines. Material Design is a design language developed by Google in 2014.

It is based on scientific research in user experience design and provides a wide variety of com-

ponents for applications to use. It is prominently featured on Android phones. Using Material

Design positively impacted development speed as less time had to be spent on manual styling.

Still, components were customized to fit the needs of the application and combined to create

new components. In the future, the application will receive a visual overhaul using MUI’s

theming features.

7.4.4 Major Packages

The majority of the pages in the application contain forms of some kind. The package Formik8

was used to handle form state. The package yup9 was used to provide validation schemas

to Formik such that invalid form entries can be determined. These validation schemas were

also partly used to check API responses for correctness. Maps were created using the popular

Leaflet10 library and OpenStreetMap data. In later iterations, a GFZ-internal Web Map Service

(WMS) may be used instead.

7https://mui.com/material-ui/
8https://formik.org/
9https://github.com/jquense/yup

10https://leafletjs.com/

41

(a) Editing location information of a station. (b) Editing receivers of a station.

Figure 7.2: Examples of pages containing forms.

42

Chapter 8

Results

The majority of the functional requirements laid out in chapter 4 were able to be implemented

to date (see table 8.1 for an analysis). Requirements not yet implemented that are part of the

MVP will see further development. Important features will be thoroughly tested before the

application reaches production stage. On the backend, endpoints related to roles and permis-

sions will be integration-tested using PHPUnit1. On the frontend, important use cases will be

end-to-end-tested using Cypress2. End-to-end tests are tests that involve the entire stack of an

application, including frontend, server and backend.

Non-functional requirements can be tested using Lighthouse3. Lighthouse is a tool devel-

oped by Google that audits a web page for performance, accessibility, best practices, SEO and

other criteria generating a score on a scale of 0 to 100 for each.

Performance Lighthouse measures the Core Web Vitals [22] and produces a weighted sum.

The Core Web Vitals include metrics such as Largest Contentful Paint, First Input Delay

and Cumulative Layout Shift, which have direct influence on how performant a site feels

to a user.

Accessibility Pages are scored based on their user experience for visually impaired and screen

reader users.

Best Practices Problems such as security issues or JavaScript errors decrease this score.

SEO Pages are scored based on how well crawlers can navigate them and locate content.

These metrics can also be used to compare the system to existing systems as described

in chapter 5. Performance scores were obtained by averaging three measurements in each

1https://phpunit.de/
2https://www.cypress.io/
3https://developer.chrome.com/docs/lighthouse/overview/

43

Table 8.1: Status of the implementations of functional requirements.

Requirement Status Description

GUI and API Access �
Responsive �� Generally complete but some components need to be al-

tered for mobile usability, e.g. filters moved from a page
into a drawer.

Authentication �
Authorization �� Implemented for networks but not stations.

Storage � The database schema is updated to meet changing re-
quirements but generally complete.

Validation �� Validation is not yet configurable in the GUI.

Updates �
API �� Generally complete but lacking some minor endpoints.

The OpenAPI documentation is not yet complete.

GUI �� The majority of use cases can be achieved through the
GUI.

SEO �� Dependent on completion of the GUI.

Inputs �� ANTEX, ocean loading data and station visit logs not yet
possible to be imported.

� Fully implemented
�� Partially implemented
� Not implemented

case to account for random errors in network latency. The performance measurements are

biased by the network latency caused by the distance from the geographic locations at which

measurements are taken to the web server. Accessibility, best practices and SEO metrics are

unlikely to change between page reloads and therefore not averaged. The measurements were

conducted using Lighthouse 9.5.0 using default settings.

The source code for the system will be made available at https://git.gfz-potsdam.de/gnss/

gnss-station-meta.

44

Performance Acessibility Best Practices SEO
0

20

40

60

80

100
Sc

or
e

Performance Acessibility Best Practices SEO
0

20

40

60

80

100

Sc
or

e

M3G semisys GNSS Site Manager Proposed

Figure 8.1: Lighthouse metrics for different systems as measured on two pages: a page for
viewing and/or editing the log of a station and a page with a map of stations.

45

Chapter 9

Conclusion

The system proposed here is capable of meeting the needs of a changing GNSS user segment.

Full support for the GeodesyML standard enables GNSS station metadata stored in the sys-

tem to adhere to the FAIR principles and facilitates machine-to-machine exchange that ensures

metadata is current and correct. We showed that designing a system with GeodesyML in mind

eases implementation of the standard. A REST API is provided for interoperability with sys-

tems that do not yet support GeodesyML. We also showed that an updated technology stack

yields improved performance and usability of the system.

Since development on the system began, work has picked up on the GeodesyML standard

within the IGS Infrastructure Committee after being mostly dormant for 6 years. There are new

proposals in draft status that the system will have to accommodate. With another system to

support GeodesyML, SLM 2.0, being in development at the same time, the format has potential

to reach general adoption and be endorsed as a standard by the IGS, phasing out ASCII sitelogs.

Any challenges or inconsistencies related to the format encountered during development are

upstreamed to maintainers. This way, future development of the system will help make the

format more adoptable by other parties.

In the upcoming months, the system will see initial use by a wider audience. As part of a

project funded by the European Research Council1, 80 new GNSS stations will be installed in

Greece for monitoring of tectonic plate motions. The metadata for these stations is designated

to be self-managed by project members within the system. This will help fix potential issues

and lay the groundwork for adoption of the system by other agencies and station operators.

1https://erc.easme-web.eu/?p=101042674

46

Bibliography

[1] European Union, “EUSPA EO and GNSS Market Report,” en-US, p. 216, 2022. DOI: 10.

2878/94903. [Online]. Available: https://www.euspa.europa.eu/sites/default/files/

uploads/euspa market report 2022.pdf (visited on 08/10/2022).

[2] O. Montenbruck and P. Teunissen, Eds., Springer Handbook of Global Navigation Satellite

Systems, 1st ed. 2017, ser. Springer Handbooks. Cham: Springer International Publishing

: Imprint: Springer, 2017, ISBN: 978-3-319-42928-1. DOI: 10.1007/978-3-319-42928-1.

[3] M. Bradke, Updates from the GeodesyML Working Group, Jun. 2022. [Online]. Available:

https://files.igs.org/pub/resource/pubs/workshop/2022/IGSWS2022 S10 04 Bradke.

pdf (visited on 08/07/2022).

[4] IGS Central Bureau, Instructions for filling out IGS site logs, Feb. 2022. [Online]. Available:

https://files.igs.org/pub/station/general/sitelog instr.txt (visited on 08/03/2022).

[5] ——, XXXX Site Information Form (site log), Feb. 2022. [Online]. Available: https://files.

igs.org/pub/station/general/blank.log (visited on 08/03/2022).

[6] I. Romero, RINEX - The Receiver Independent Exchange Format - Version 4.00, en-US, Dec.

2021. [Online]. Available: https://files.igs.org/pub/data/format/rinex 4.00.pdf (visited

on 08/09/2022).

[7] IGS Central Bureau, IGS Site Log Manager. [Online]. Available: https://slm.igs.org/login.

php (visited on 08/03/2022).

[8] A. Fabian, C. Bruyninx, A. Miglio, et al., “M3G - Metadata Management and Distribution

System for Multiple GNSS Networks,” 2021, Publisher: Royal Observatory of Belgium

Version Number: 4.2. DOI: 10.24414/ROB-GNSS-M3G. [Online]. Available: https://gnss-

metadata.eu/landing/m3g (visited on 08/03/2022).

[9] M. Bradke, “SEMISYS - Sensor Meta Information System,” 2020, Publisher: GFZ Data

Services Version Number: 4.1. DOI: 10 . 5880 / GFZ . 1 . 1 . 2020 . 005. [Online]. Available:

https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=9212b781-

017b-11eb-9603-497c92695674 (visited on 08/03/2022).

47

[10] Geoscience Australia, GNSS Site Manager. [Online]. Available: https://gnss-site-manager.

geodesy.ga.gov.au/ (visited on 08/03/2022).

[11] IGS Central Bureau, “IGS 2021+ Strategic Plan,” en, p. 15, 2021. [Online]. Available: https:

//files.igs.org/pub/resource/pubs/IGS Strategic Plan 2021 Final.pdf.

[12] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The FAIR Guiding Principles for

scientific data management and stewardship,” en, Scientific Data, vol. 3, no. 1, p. 160 018,

Mar. 2016, Number: 1 Publisher: Nature Publishing Group, ISSN: 2052-4463. DOI: 10 .

1038/sdata.2016.18. [Online]. Available: https://www.nature.com/articles/sdata201618

(visited on 08/03/2022).

[13] A. Miglio, A. Fabian, C. Bruyninx, et al., “Proposed metadata standards for FAIR access to

GNSS data,” en, Copernicus Meetings, Tech. Rep. EGU22-11968, Mar. 2022, Conference

Name: EGU22. DOI: 10 . 5194 / egusphere - egu22 - 11968. [Online]. Available: https : / /

meetingorganizer.copernicus.org/EGU22/EGU22-11968.html (visited on 08/07/2022).

[14] C. Bruyninx, A. Fabian, J. Legrand, et al., “GNSS Station Metadata Revisited in Response

to Evolving Needs,” en, Copernicus Meetings, Tech. Rep. EGU2020-18634, Mar. 2020,

Conference Name: EGU2020. DOI: 10.5194/egusphere-egu2020-18634. [Online]. Avail-

able: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-18634.html (visited

on 08/03/2022).

[15] N. Brown, R. Fraser, and G. Johnston, “Maximising interoperability and discoverability

of geodetic products and services,” en, p. 16, 2016. [Online]. Available: http://geodesyml.

org/wp-content/uploads/2016/03/BROWN-IGS-Workshop-2016.pdf.

[16] W. Kresse and D. Danko, Eds., Springer Handbook of Geographic Information, en, ser. Springer

Handbooks. Cham: Springer International Publishing, 2012, ISBN: 978-3-030-53124-9 978-

3-030-53125-6. DOI: 10 . 1007 / 978 - 3 - 030 - 53125 - 6. [Online]. Available: https : / / link .

springer.com/10.1007/978-3-030-53125-6 (visited on 08/10/2022).

[17] N. Brown, International Standards and GeodesyML, en-US, May 2016. [Online]. Available:

http://geodesyml.org/international-standards-and-geodesyml/ (visited on 08/07/2022).

[18] C. DeMets, R. G. Gordon, and D. F. Argus, “Geologically current plate motions,” en, Geo-

physical Journal International, vol. 181, no. 1, pp. 1–80, Apr. 2010, ISSN: 0956540X, 1365246X.

DOI: 10.1111/j.1365-246X.2009.04491.x. [Online]. Available: https://academic.oup.com/

gji/article-lookup/doi/10.1111/j.1365-246X.2009.04491.x (visited on 07/31/2022).

48

[19] M. Bradke, “Konzeption und Entwicklung eines datenbankbasierten Systems zur Ver-

waltung von GNSS-Daten,” de, M.S. thesis, Hochschule Neubrandenburg, 2012. [On-

line]. Available: https : / / digibib . hs - nb . de / resolve / id / dbhsnb thesis 0000000846 ?

search=d1e47a24-a251-4fd1-a445-13fadca9cd12& hit=0 (visited on 08/07/2022).

[20] Statista, Most popular database management systems 2022, en, Jan. 2022. [Online]. Available:

https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-

management-systems/ (visited on 08/01/2022).

[21] T. M. Connolly and C. E. Begg, Database systems: a practical approach to design, implementa-

tion, and management, eng, 6. ed., global ed, ser. Always learning. Boston Munich: Pearson,

2015, ISBN: 978-1-292-06118-4.

[22] Google, Web Vitals, en, 2022. [Online]. Available: https://web.dev/vitals/ (visited on

08/10/2022).

49

List of Figures

2.1 Method of positioning using GNSS under idealized conditions. 7

3.1 GeodesyML builds on other standards . 12

4.1 User story map for guests and regular users. 15

4.2 User story map for the station operator role. 16

4.3 User story map for the administrator role. 18

4.4 User story map for the network administrator role. 19

5.1 SLM user interface for viewing a sitelog. 24

5.2 M3G user interface for viewing a sitelog. 25

5.3 semisys user interface for viewing a sitelog. 26

5.4 GNSS Site Manager user interface for viewing a sitelog. 26

6.1 Application architecture as component diagram 30

6.2 ERD of the station logs, stations, network station and networks tables. 31

6.3 Bounding box of 9F4M93H8+GNS+001. 33

6.4 ERD of station receivers and related tables. 34

6.5 ERD of tables related to validation of station logs. 35

7.1 Examples of pages on the frontend. 39

7.2 Examples of pages containing forms. 42

8.1 Comparison of Ligthouse metrics between systems 45

9.1 Activity diagram for the process of inviting a user to take up a role on a network

or station. 52

9.2 Activity diagram for the process of drafting, editing and publishing a station log. 53

9.3 Sequence diagram for the process of drafting, editing and publishing a station log. 54

50

List of Tables

3.1 Sections of an ASCII sitelog . 10

3.2 Some of the additional information stored in a GeodesyML sitelog compared to

an ASCII sitelog . 13

5.1 Comparison of existing systems for GNSS station metadata management. 27

6.1 Structure of a double plus code by example of 9F4M93H8+GNS+001 (POTS00DEU). 32

8.1 Status of the implementations of functional requirements. 44

51

Appendix

9.1 Business Processes

Invited UserInviting User

Enter user email

Enter user roles

Show error

Submit form

Show success alert

[user exists in system]

[else]

[wants role emails]
[else]

Assign roles to invited user

[user accepts]
[user declines invitation]

Show success alert

[input is email]

[else]

Notify invited user

Send email to invited user

Notify inviting user of failure

Notify inviting user of success

Figure 9.1: Activity diagram for the process of inviting a user to take up a role on a network or
station.

52

User System

Select to create draft of station log

Confirm selection

Copy station log

Save as draft

Copy and save relationships

Edit draft

Save draft

Publish draft

Set license and publishing date

[else][publishing date before now]

Display as current Display as draft

Figure 9.2: Activity diagram for the process of drafting, editing and publishing a station log.

53

Client Laravel pgsql

User updates
station log

1 : POST create-draft

2 : Replicate station log, save as draft

3 : station log

4 : Recreate registered relationships

5 :

6 : POST {uuid}

7 : Update values

8 : Update validation

9 : validation
10 : station log with validation

11 : POST publish-draft

12 : Update license, published_at

13 : station log
14 : station log

Figure 9.3: Sequence diagram for the process of drafting, editing and publishing a station log.

54

