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ABSTRACT

Abstract
In the context of the establishment of the new Institute for Solar-Terrestrial
Physics at DLR, this work deals with the development of an automatic, hor-
izontally scalable system for the operational processing and postprocessing
of ground- and space-based data and thus for the continuous provision of
data sets that can be used in both basic and applied research. For this pur-
pose, the use cases and the requirements on the system are first collected
and analyzed. Existing systems and projects in the DLR environment are
then examined in order to adapt and, if necessary, extend existing concepts.
After that the system is planned in a conceptual design, which is used in the
following chapters as a basis for the selection of suitable software and as a
guideline for implementation.
The final implementation uses Docker and Kubernetes to create a distributed,
container-based, modular system, which allows the execution of algorithms
and programs implemented in almost any programming language. By using
the software of the Argo Project these modules can be linked to complex
processing chains and started in response to time- or file-based events.

Kurzfassung
Im Rahmen der Gründung des neuen Instituts für Solar-Terrestrische Physik
am DLR beschäftigt sich diese Arbeit mit der Entwicklung eines automatis-
chen, horizontal skalierbaren Systems zur operationellen Prozessierung sowie
zur Nachprozessierung von boden- und weltraumgestützten Daten und somit
zur kontinuierlichen Bereitstellung von Datensätzen, die sowohl in der ange-
wandten Forschung als auch in der Grundlagenforschung zum Einsatz kom-
men. Dazu werden zunächst die Anwendungsfälle und die Anforderungen
an das System gesammelt und analysiert. Anschliessend werden bestehende
Systeme und Projekte im Umfeld des DLRs betrachtet, um bereits vorhan-
dene und erprobte Konzepte zu adaptieren und gegebenenfalls zu erweitern.
Daraufhin wird das System in einem konzeptuellen Entwurf geplant, welcher
in den darauf folgenden Kapiteln als Grundlage zur Auswahl geeigneter Soft-
ware und als Leitfaden zur Implementierung genutzt wird.
Die finale Implementierung nutzt Docker und Kubernetes, um so mit Hilfe
eines Container-basierten, modularen Systems Algorithmen und Programme,
implementiert in nahezu beliebiger Programmiersprache, auf einem verteilten
Rechnernetz auszuführen. Diese Module können durch den Einsatz der Soft-
ware des Argo Project zu komplexen Prozessierungsketten verbunden und als
Reaktion auf zeitliche oder datei-basierte Events gestartet werden.
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1 INTRODUCTION

1 Introduction
The upper region of the Earth’s atmosphere, which is ionized by the Sun’s
radiation, is called ionosphere. It is located between 60km and 1000km al-
titude and it’s density is directly influenced by the Sun and the amount of
enegery absorbed. The resulting fluctuations are attributed to space weather.
Space weather refers to conditions on the Sun and in the solar wind, mag-
netosphere, ionosphere and thermosphere. It manifests itself in a variety
of ways and has a range of effects on the Earth. The impact of the solar
wind on the ionosphere affects satellites, aviation, telecommunications and
navigation. For this reason, monitoring space weather is a crucial national
task. (German Aerospace Center (DLR), 2019b; National Oceanic and At-
mospheric Administration, 2019b; Kriegel, 2012; Noja, 2010)
The new Institute for Solar-Terrestrial Physics established in June 2019 at
the DLR site in Neustrelitz will create the conditions for prompt, precise and
reliable observation and forecasting of space weather. Those observations and
forecasts will help to increase resilience of vulnerable infrastructure compo-
nents. Therefore the new institute focusses on the state and the dynamics of
the Ionosphere-Thermosphere-Magnetosphere System (ITM) and it’s driving
by the Sun and by the lower and middle atmosphere. This includes both ba-
sic and applied research on space weather with the goal to protect national
infrastructures and support affected industries through reliable observations
and forecasts. (German Aerospace Center (DLR), 2019b; German Aerospace
Center (DLR), 2019a)
The main objective of this work is to develop an operational processing sys-
tem using state of the art technologies according to the software development
guidelines of DLR. This system will be used to run various algorithms and
reliably produce the data needed for both basic and applied research on this
subject.

1.1 Overview of space and ground based data
To achieve this goal a lot of data can be taken into consideration including
space and ground based observations.

1.1.1 Space Based Observations

The availability of numerous medium Earth orbit (MEO) satellites deployed
by GPS, GLONASS, BeiDou systems and fulfillment of Galileo constellation,
allows continuous monitoring of the ionosphere and neutral atmosphere of the
Earth by tracking GNSS signals from low Earth oribiting (LEO) satellites.

1



1 INTRODUCTION 1.1 Overview of space and ground based data

In addition to the GNSS radio occultation measurements on board, naviga-
tion measurements can be used to derive the total electron content between
GNSS and LEO satellites. This information provides an excellent database
for subsequent data inversion and assimilation into 3D models of the iono-
spheric electron density distribution up to GNSS orbit heights. (Heise et al.,
2002; Jakowski et al., 2002)
Dual-frequency altimeter missions such as TOPEX-Poseidon and Jason 1
and 2 are excellent sources of non-GNSS based TEC1 data over the oceans.
The data are used for the validation of global ionospheric maps of vertical
TEC computed from ground based monitoring stations. As the altimeter
measurements are limited to the ocean areas, these data are geographically
complementary to GNSS data, which are mainly obtained over land. In the
same way, the geodetic orbit determination and positioning system DORIS,
which consists of a global network of terrestrial beacons, shall be considered
as an independent data source for ionospheric monitoring and reconstruction.
GNSS reflectometry is a new remote sensing technology that opens new sci-
entific horizons in topography, weather forecast and climate research. Dual
frequency signals allow estimating the TEC, which will support space weather
monitoring in future.
In addition to indirect TEC measurements along signal paths, direct in situ
measurements, especially of electron density, e.g. Langmuir probe on board
CHAMP and SWARM, and energetic particles from space platforms, e.g.
GOES, Galileo, shall be addressed to complement the data sets obtained
from other sources. (Heise et al., 2002; Jakowski et al., 2002; Park et al.,
2013; Pignalberi et al., 2016)

1.1.2 Ground Based Observations

With the modernization and completion of individual GNSS, the use of multi-
constellation multi-frequency observations including new signals allows con-
tinuous monitoring of Earth’s ionosphere using globally distributed sensor
stations. In addition, the steadily growing number of GNSS receivers and
associated networks essentially supports the establishment of high precision
monitoring of ionospheric weather, including perturbation tracking and fore-
casts, which can be used in space weather services. Other ground based
methods like Vertical Sounding (VS), Incoherent Scatter Radar (ISR), Very
Low Frequency (VLF) or Radio Beacon (RB) measurements provide comple-
mentary data and can therefore be used to complete GNSS based data sets.
VLF signals (3 - 30 kHz), which are usually transmitted for communica-

1Total electron content
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1 INTRODUCTION 1.1 Overview of space and ground based data

tion with submarines, can effectively be used to detect solar flares in the
X-band range, for example by the GOES satellites operated by NASA. There-
fore, DLR’s operational Global Ionosphere Flare Detection System (GIFDS),
originally developed for flare monitoring and detection, has great potential
to warn users in case of extreme flares with a delay of less than 1 minute.
(Wenzel et al., 2016) Furthermore, GIFDS shall be used in the future to de-
tect and monitor the precipitation of solar wind particles via magnetospheric
coupling. The timely information on strength and expected dynamics of solar
flare and particle precipitation activity is needed to ensure reliable terrestrial
High Frequency (HF) communication, as these events cause increased signal
absorption in the ionosphere up to black out. For example, in the case of
transpolar flights, which usually use terrestrial RF communication, aircrafts
can be warned in time to react accordingly, e.g. to change their route.
Vertical sounding measurements performed by ionosonde stations are being
used to get information on the vertical electron density distribution. These
data are therefore complementary to GNSS based sounding that provides a
good horizontal resolution. In addition, ionospheric data from ISR facilities,
in particular from the European Incoherent Scatter Scientific Association
(EISCAT), will be used to study the underlying physics of complex phenom-
ena, especially in relation to coupling processes from below and above. The
world-class EISCAT facility provides an excellent data basis for testing and
validating ionospheric models describing the polar ionosphere whose knowl-
edge is a key issue for understanding the generation of propagation of iono-
spheric pertubations. The heating facilities can be used to study the impact
on trans-ionospheric radio signals or to perform active experiments for better
understanding the ionospheric impact on trans-ionospheric signal propaga-
tions. (Sato et al., 2018) EISCAT is currently building a next-generation
radar that will enable 3D monitoring of the ionosphere. The new radar facil-
ity is capable of addressing new, significant science questions and can also be
used to improve our understanding of space weather effects on technological
systems like GNSS. The location of the radar within the auroral oval and
at the edge of the stratospheric polar vortex is also ideal for studies of the
long-term variability in the atmosphere and global change. (McCrea et al.,
2015) The ground based observations group will be strongly involved with
EISCAT to work at the forefront of science once the construction of EISCAT
3D is completed. Although RB measurements transmitted by several LEO
satellites also provide TEC like GNSS measurements, RB data are able to
provide a snapshot of the horizontal distribution of the ionospheric ionization
along the satellite trace in the ionosphere, thus being also complementary to
GNSS data. The geometry and the high spatial resolution make the data
very attractive for regional tomography of the ionosphere and the detection

3
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of travelling ionospheric disturbances.

4



2 TASKS / OBJECTIVES

2 Tasks / Objectives
This section is focussed on the analysis of system capabilities. It therefore
describes the requirements and use cases of the new system.

2.1 Requirements analysis
The following is a list of requirements that will be used as a guidance during
the development of the system and that describes features the new system
must support.

Automated operational processing

To constantly process and produce data used for research, the first and most
important requirement of the system is the automated operational processing
of data. After the initial setup the system should run mostly unsupervised,
manage incoming data and return and store the processing results. There-
fore there have to be mechanisms that handle file transactions, exceptions,
scheduling and garbage collection automatically. This instance of the system
should also be strongly isolated to keep any external impacts from interfering
with the system and guarantee a very high availability.

Postprocessing

In certain situations it is necessary to process a specified set of data or files
again. In this process the configuration should be able to be changed, for
instance to adapt the geospatial or temporal resolution. So in addition to
the operational processing there has to be a postprocessing instance which
gives the users the possibility to configure and trigger a workflow manually.

Module-based approach

The processing algorithms or programs of the systems should be encapsuled
inside of modules. This approach aims to increase the modularity of the
system and to enhance the maintainability of the system as well as the mod-
ules itself. It furthermore enables development of the modules with focus on
the processing itself and leaves the communication between modules and file
handling to the processing system.

5



2 TASKS / OBJECTIVES 2.1 Requirements analysis

Independent of programming language

The majority of algorithms will be implemented in Python, C, MATLAB,
Fortran or Go. But to support modules written in an arbitrary programming
language and to grant the users a free choice in terms of implementation, the
system should be able to run modules regardless of the programming lan-
guage. Therefore it has to be able to run isolated environments which pro-
vide all necessary dependencies, like interpreters, access to external libraries,
configurations, etc.

File based processing

The system should be able to process files of nearly any type or extension.
This includes handling of text and binary files, as well as handling archives,
e.g. tarball or zip files.
Even though the concept is not part of this work, the system should op-
tionally be able to be handle streams, since some of the modules, that are
currently running in the operational processing environment, are based on
stream-handling.

Matching of data

Many modules need data from different sources that are interdependent. The
system should provide a mechanism to resolve and find files that match those
dependencies. Therefore it should have a mechanism that allows the user to
describe those dependencies.

Storage

The system should be able to store module input and output and logs tem-
porarily over a defined period of time. This storage will be used for the file
management of the operational processing environment. From this storage
the processing results can then be moved or copied to a data archive for long-
time storage. The concept of long-time archiving is not part of this work and
will therefore not be explained in more detail.

Garbage collection

To avoid running out of memory or storage the system should provide a
garbage collection mechanism, which is typically used to automatically clean

6



2 TASKS / OBJECTIVES 2.1 Requirements analysis

up data or files that expired or are not used any more. This mechanism should
automatically detect the expiration date of files based on their metadata or be
configurable in terms of expiration date or duration and the type of resources
that should be removed.

Error handling

The system should provide an exception handling system. This should not
only be limited to the processing level but should also take care of system
modules like for example the scheduling and the storage management. Fur-
thermore the modules itself should be isolated, so that a failing process can
not interfere with any routines of the system.

Distributed

The system should run in a distributed manner. This way the system should
be able to compensate hardware and operating system failures and further-
more enable scale-out or horizontal scaling possibilities.

High availability

To guarantee a proper operational processing the system should provide a
high degree of uptime or availability to reduce losses of data or processes.
This not only includes error handling but also increasing availability of all
system components, for example by clustering, sharding2 or avoiding single
points of failure, and reduce downtime through other impacts like crashes of
processing hosts or simultaneous reboots of all hosts.

Isolation

The system should run inside of an isolated, dedicated network so the pro-
cesses itself will not be influenced from any external impacts. This will also
help to increase the systems availability and stability.

Monitoring and Logging

The system should provide a monitoring and an universal logging mechanism
so that operators can control the function and the health status of the mod-
ules and the system itself.

2automatic splitting of data on several servers
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2 TASKS / OBJECTIVES 2.2 Users and roles

The monitoring will give information about the system, like uptime, resource
consumption (CPU, RAM, storage, etc.) and requests per second, which can
be used in decision making about the scaling of the system.
The logging mechanism will provide a way to expose and analyze the logs of
the processing jobs and the system itself to help finding potential issues or
possibilities of improvement.

Simplicity and Transparency

The system should be easily configurable and should not expose implemen-
tation details to its users. For instance the user should not need to know
the location (IP or hostname) of the systems components, like a database.
It should therefore be encapsuled behind interfaces that simplify the users
access.

Secure communication

The system should use secure communication protocols, for instance HTTPS
to improve security and to prevent external attacks or leaks of sensitive data.

2.2 Users and roles
This section covers the use-cases of the processing system, which can mainly
be categorized into two groups:

• Scientists

• Administrators

2.2.1 Scientist

The modules that are intended to be executed on the system shall be pro-
vided and implemented by the scientists. Additionally they should be able to
integrate the modules in the system by setting up workflows and the modules
dependencies. Once the module is integrated in the system and running cor-
rectly the scientists can review the produced results. They can then validate
those to check if the module works the way it was intended to or export the
results to use them for further processing.
Furthermore the scientists are able to use the system for postprocessing. To
do that they have to provide configuration information used for the module

8



2 TASKS / OBJECTIVES 2.2 Users and roles

and start the process manually.
These use-cases are depicted in figure 1.

Processing system

Processing Operational processing

Postprocessing

Implementation

Configure workflow

Configure process environment

Provide dependencies

Results

Validate

Export

Scientist

extends

extends

extends

extends

extends

extends

extends

Figure 1: Use cases related to scientists

2.2.2 System administrator

The monitoring of the system shall be done by the administrators. This
includes health monitoring of the system itself and all of the processes that
are running on it. Additionally they can monitor the performance, which
includes resource (e.g. CPU or RAM) utilization and process durations, so
they can decide on scaling. In case of internal modules and processes failing
they can also check logs to identify and solve problems.
The administrators are also responsible for setting up and maintaining the
system, which includes management of hardware, hosts, virtual machines and
software installations.
These use-cases can be seen in figure 2.
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Processing system

Setup

Monitor

Metrics

Health

Logs

Maintenance

Administrator extends

extends

extends

Figure 2: Use cases related to administrators

2.3 Storage requirements
A precise prediction of the amount of storage consumed in the system is not
trivial, since the system must also be capable to process data from future
missions. To give an idea of how the storage consumption could be predicted,
the amount of data of two product types was predicted.
The first type are scintillation3 products. The measuring stations produce
around 25 Megabyte of raw data each day. Since there are currently eight
stations involved, the amount of raw data for this product type amounts
to 200 Megabytes per day. The processing results of this product are a se-
ries of plots with a size of around 330 Kilobytes per plot. The amount of
plots depends on the configuration provided by the user. Since there are cur-
rently twelve plots configured, the output of the module amounts to about
4 Megabytes per station per day. This adds up to a total of 232 Megabytes
per day for the scintillation product type.
Another module is the NPSM4. It depends on the date and time and the
F10.75 value corresponding to that. Since the F10.7 values or tables will not
be stored in the system, they are not relevant in this matter. Currently the
output of the NPSM is about 9 Megabytes in size and gets computed every
hour, which leads to a total of around 216 Megabytes per day.
In respect to the given values an average size of around 220 Megabytes per

3Diffraction and forward-scattering of trans-ionospheric radio signals caused by elec-
tron density irregularities and equatorial plasma bubbles (Basu et al., 1981; Kriegel et al.,
2017)

4Neustrelitz Plasmasphere Model
5Solar radio flux at 10.7 cm (2800 MHz); can be used as indicator of solar activity,

which correlates with the number of sunspots and UltraViolet and visible solar irradiance
records (National Oceanic and Atmospheric Administration, 2019a)
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product per day will be presumed. A system processing ten product types
in a similiar scale would therefore produce around 2.2 Gigabytes of data per
day, around 800 Gigabytes of data per year and around 8 Terabytes of data
for a mission with a lifespan of 10 years.
Files will also be transferred to an archive storage. Thus not all files have
to be kept inside the processing system, which will also help decrease the
required amount of storage for the processing system.
While postprocessing data the incoming and outgoing traffic on the storage
will be higher than in the operational environment since all the process-
ing happens on a sequential basis instead of regularly scheduled processes.
Therefore the storage instances for the operational and the postprocessing
environments should be separated.
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3 Existing systems
This section covers existing processing systems to get an overview over used
architectures, strategies and best practices. It therefore focusses similiar
projects or systems in the environment of DLR, including the CHAMP pro-
cessing system (Wehrenpfennig, 2002), BACARDI (Stoffers et al., 2019) and
the DIMS (Böttcher et al., 2001).

3.1 CHAMP Processing System
The CHAMP processing system was designed for automatic processing of
space based radio occultation and topside navigation data measurements
onboad CHAMP combined with ground based data files, but was also used
for processing for data provided by the GRACE satellite mission. Data is
entirely provided in form of files which are obtained by the system via FTP
through the Intra- and Internet.

3.1.1 Architecture

The architecture of CHAMP processing system is displayed in figure 3. The
system consists of five components:

Figure 3: System architecture (Wehrenpfennig, 2002)

Data management Temporary data storage, control of data output of the
system

Input Reception of input data for the processing

Job Control Combination of input data for task (job) management
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3 EXISTING SYSTEMS 3.1 CHAMP Processing System

Process Control Spawns and monitors processes

Supervising Command input (Operator); output of system status informa-
tion

The jobs in this system are triggered by the arrival of new input data or time
events. The application modules are started by the system when all input
files for a processing step are available. Therefore the dependencies of a job
are described in a relation file.
Jobs whose dependencies are resolved and thus all needed input files are
available are delivered to a job queue which submits them to the processing
system where the jobs are executed.

3.1.2 Naming conventions

The foundation for the automatic assignment of input files to related jobs
are the systems naming conventions for files and jobs. By using matching
patterns described in the relations.env file the job control system looks for
all jobs in a related job queue to find jobs matching the rules.
Product names must be unique for a products and jobs. The order of the
attributes in the file name is significant.
The first term of the name is the product type. It is followed by additional
information, for instance subtypes, separated by a plus sign.
Furthermore the file names will contain time information separated by an
underscore.
After that an arbitrary number of additional attributes can follow.
Those naming conventions are shown in table 1.

<type> <info> YYYY DOY HH ...
Product type Subtype Year Day of year Hour Add. arguments

Table 1: Naming conventions (Wehrenpfennig, 2002)

3.1.3 Configuration and Initialisation files

The configuration and initialisation of the processes and the system in general
is realised by using .env and .ini files. An .env or .ini file contains key-value-
pairs closed by a semicolon sign. The following files will be automaticly
generated and used as default. They can be adjusted to fit the needs of the
process.
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global.env Configuration file for most of the system modules containing
global parameters like paths and names

local.env Contains switches / parameters used for applications

local.ini Contains parameters passed by the controlling system to an appli-
cation

An example of a configuration is shown in listing 1.

[ INPUT ]
INFILE$0 = INPUT/gps_2001_23;
INFILE$1 = INPUT/leo_2001_23_06;
INFILE$2 = INPUT/HK_2001_23_06;

[ OUPUT ]
# name of the output directory
OUTDIR = OUTPUT;
# base names of products
PRODUCT$0 = OUTPUT/CH-AI-1-MRR;
PRODUCT$1 = OUTPUT/CH-AI-1-LRR;
# full name of a product, if it can't be derived from the job

that has to be processed↪→

OUTFILE$0 = HRR+2001_23_05;

[ ATTRIBUTE ]
# list of attributes passed by the controlling system
ATTR$0 = RAPID; # type
ATTR$1 = 2000; # year
ATTR$2 = 00; # doy
ATTR$3 = 01; # hour
ATTR$4 = 126; # measurement id

Listing 1: Example .ini file (Wehrenpfennig, 2002)

3.1.4 Definition of data dependencies

The relations or the dependencies between files are described in an rela-
tions.env file. Those files also use the syntax described in 3.1.3. An example
for a relations.env file is shown in listing 2.
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# input dependencies of jobs and assignment description
# match pattern example
# '*_=_!_[0-3]_{-0+0}[0-365]_{0+23}[0-23]
# <all>_<exact-num>_<exact-string>_<range>_<offset-range>

# begin of section of jobtype LRGEN
[ LRGEN ]

# attributes of the job:
# <subtype>_<YYYY>_<DOY>_<HH>;
# list of data types to receive with job attribute match

pattern↪→

INTYPE$0 = iCH-AI-1-LR *_=_=_=;
# if OVERWR is set, new receive input data may overwrite

older data↪→

OVERWR$0 = ;

# begin of section of jobtype PROCC
[ PROCC ]

# attributes of the job:
# <subtype>_<YYYY>_<DOY>_<HH>;
# list of data types to receive with job attribute match

pattern↪→

INTYPE$0 = PSO-LEO *_=_{-1+2};
INTYPE$1 = PSO-GPS *_=_=;
INTYPE$2 = CH-AI-1-MR *_=_=;
# if OVERWR is set, new receive input data may overwrite

older data↪→

OVERWR$0 = ;
OVERWR$1 = ;
OVERWR$2 = ;

Listing 2: Example relations.env file
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3 EXISTING SYSTEMS 3.2 BACARDI

3.2 BACARDI
The Backbone Catalogue of Relational Debris Information or short BAC-
ARDI is a system developed by the German Space Operation Center (GSOC)
and DLR Simulation and Software Technology to track cooperative and un-
cooperative orbital objects.
The main goal of this project is to provide a unified database containing or-
bit information of active satellites and space debris in Earth’s orbit. In this
context the focus lies on the development of an orbit database (High pre-
cision and integrity), an independent path determination from sensor data
and the support of mission operations at GSOC in collision avoidance. Ad-
ditionally the development and optimization of algorithms, like observation
correlation, orbit propagation and determination, and detection and forecast
of maneuvers, fragmentations an re-entries, is targeted.

3.2.1 Architecture

The system’s architecture is depicted in figure 4.

BACARDI

Flight
Dynamic
Libraries

Airflow

Scheduler CLI Monitoring
Webservice

Airflow
Database

DAG
Definitions

HTTP

Django

Webservice

Object Relational
Mapper

Tasks

BACARDI
Database

HTTP

Executor

Figure 4: System architecture (Stoffers et al., 2019)

The system consists of three main components, which are loosely coupled to
ensure horizontal scaling possibilities. Those components are:

• Django

• Flight Dynamic Libraries

• Airflow
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The Django component builds the core of the system. It contains the main
data model, which is definied using the Django6 Object Relational Mapper
(ORM). This means the data model is described using Python classes and
will be mapped to tables in a relational database.
Additionally the Django component includes a tasks module, which provides
callable tasks that provide atomic activities or methods to interact with the
data model. Those tasks can be categorized into three groups:

Importer is a task that imports data from a source into the BACARDI
database.

Exporter is a task that exports data from the BACARDI database into a
specified format.

Processor is a task that executes computations or calculations on the data
stored inside the BACARDI database.

Furthermore the Django component contains a web service component, which
uses Django to provide access to the database and the systems tasks in form
of a web-based API.
The Flight Dynamic Library component contains algorithms and functions
written in Fortran that will be used or called with Python wrapper functions
implemented using the F2x library (See https://f2x.readthedocs.io/e
n/latest/).
The Airflow component uses the open source Python framework Apache Air-
flow to handle task scheduling and processing. It’s main purposeses in this
system are the monitoring of workflow changes, the timely scheduling of
processor workflows and the execution of unscheduled processes via it’s web
service or CLI. The Apache Airflow framework will be described in more
detail in section 5.4.1.

6Open source Python web framework
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3.3 DIMS
The Data Information and Management System (DIMS) is a multi-mission
system developed in cooperation between Werum Software and Systems AG
and the German Remote Sensing Data Centre (DLR-DFD). It is used for
processing, archiving and distributing earth observation products.

3.3.1 Architecture

The DIMS consists of multiple components, which are shown in figure 5 and
are briefly explained as follows:

Product Generation and Delivery is responsible for providing process-
ing results to the user by making them accessible via FTP or similiar
services.

User Information Services provides an interface for the user capable of
ordering products or processing requests.

Product Library contains all input and output products and is used for
providing those to the operational processing as well as archiving those
products. (Long time archiving)

Order Management is used to manage users and their credits. It therefore
decides over approval of product or production requests and forwards
those to the production control.

Production Control generates request trees out of requests forwarded by
the order management to examine required processing chains, which
are passed to the Processing or Post-Processing System afterwards.

Processing System is used to start or trigger the processes or algorithms
themselves.

Post-Processing System is responsible for processing post-processing re-
quests.

Ingestion System is responsible for synchronizing external data from mul-
tiple sources and source types with the product library.

Operating Tool provides monitoring and controlling tools for the system.
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Figure 5: Processing systems in DIMS (functional view) (Böttcher
et al., 2001)

3.3.2 PSM

One of the DIMS components is the Processing System Management (PSM),
which is implemented using Java. It is used to manage processing jobs or
instances and provides an interface between the processing and archiving
mechanisms and the processing algorithms. A general overview of the com-
ponents used with the PSM is shown in figure 6.
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Figure 6: PSM system architecture (Böttcher, 2004)

The most common functionalities of the PSM are the queueing of production
requests, the interaction with the DIMS Product Library, including retrieval
of input products and transfer of output products, and, together with the
OT (Operating Tool), the provision of a graphical user interface to monitor
and control the processing system. Additionally it provides autonomous
operation capabilities, including product cache management and pre-caching
of input products, as well as a rule based workflow control and processor
charging, scheduling and load balancing for multiple processors.
The PSM supports multiple scenarios for triggering processors, which include
the systematic ingestion of products into the Product library, processes that
are triggered on a timely basis or by the Product library, processes that are
triggered on demand and are initiated by a user’s order and processes that are
used to transfer products from the Product Library to external destinations.
Those scenarios are shown in figure 7.
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DIMS
Product Library

Archive

Inventory

Product Library trigger or timer driven
systematic processing
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Product Generation

Request Trees

DIMS Production
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Delivery
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Figure 7: PSM trigger scenarios (Böttcher et al., 2001)

The processors itself are implemented using a Java interface, which defines
methods a processor has to provide to be run correctly in the PSM envi-
ronment. This way the processors are standardized. The processors can be
executed as Java functions or shell scripts.
The dependencies between processes or the workflows can be described in an
XML representation.

3.4 Summary
The described systems provide a simple overview over processing systems in
the environment of DLR. Some of the concepts mentioned in those systems
should be used as an inspiration for the development of the new system.
This includes common concepts, like the job and module based structure of
all systems, the possibility to describe dependencies or relationships between
different product types, as shown in the CHAMP processing system, and the
use of a centralized database to store all products available in the system,
as shown in the BACARDI project. Additionally the abilities of the DIMS,
namely to describe processing chains as workflows and to trigger jobs based
on a timed schedule as well as on other events like incoming data, should be
integrated into the new system.
Even though the DIMS already provides a way to run algorithms written in
various programming languages, the concept should be generalized to allow
the use of arbitrary languages. Furthermore since the new system should
process file-based data, the concept of storing data inside the central database
has to be adjusted. Additionally it would be desirable to improve the ease
of use by generalizing the way of describing interdependent files.
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4 Proposed system concept
The following chapter deals with the concepts and the architecture of the
new system.

4.1 Structure
This section focusses on the new systems architecture and structure as well
as the components architecture and interplay.

4.1.1 Overview

A general architectural overview of the new system is depicted in figure 8.

Monitoring

Logging Metrics

Logs & Metrics

Central module storage

Process managementJobs Data management

Get modules

Spawns /
handles in- and output

Monitors changes /
stores and gets files

use useuse

Figure 8: Component overview

The architecture of the system aims at a loose coupling of the components,
so that individual components can be replaced by other implementations.
This can be benefitial in performance optimization, e.g. by replacing the
used database, or in case a certain software is no longer supported.
The system consists of the following components:

Process management including the workflow engine and the scheduler,

Data management including the metadata database and the file storage,

Central module storage which is used to store and distribute all modules
that will be used in the processing system,

the jobs which will be spawned by the process management and used to
run the modules and
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the monitoring system which includes mechanisms to provide process logs
and metrics of all components.

The process management will be responsible for monitoring the data man-
agement for changes and triggering or spawning jobs on a timely basis or on
events utilizing the central module storage. Therefore certain dependencies
have to be defined which describe the events on which a job has to be started.
Furthermore the process management handles the injection of input data into
the job’s modules and the transfer of output data to the data management.
Every component in the system will expose logs and metrics to an interface
which collects those and exposes them to the administrators.

4.1.2 Process management

The process management will consist out of two components: a scheduler
and a workflow engine.
The scheduler will be responsible for spawning jobs based on certain criteria.
This can for example be a time interval or an event, e.g. incoming data.
Every job in the system has to define those criterias to tell the scheduler,
when the jobs need to be run. Since the system will run in a distributed
architecture, the scheduler must also have the possibility to check health and
resource availability of the systems nodes to ensure a proper scheduling on
the processing nodes.
To guarantee that jobs can be spawned in case of incoming data, the process
management has to communicate with the data management and watch or
subscribe to changes.
The workflow engine will be responsible for combining modules or tasks into
workflows. Since most workflows will be based on more than one task, e.g.
download an external file, prepare the data and process it, there has to be a
mechanism which allows configuration of chains and executes the processes in
order as well as enabling communication between the modules of a workflow.
This includes handling text output and temporarily storing file outputs.
The interplay of the components is shown figure 9.
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Process management
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Figure 9: Process management components interplay

4.1.3 Data management

The data management will also include two components.
The first one is the file storage, which will be used to store any product file
in the system. Those files can be mirrored from external sources or output
products of finished processes inside the system. Since the process manage-
ment will have to monitor and react to changes in the filesystem, there has
to be a mechanism that supports this feature. Furthermore since the system
will output temporary files, a garbage collection system must be available.
The file storage will have several interfaces that allow the modules to access,
archive and human interactions. For the use by the modules a common pro-
tocol like FTP or HTTP should be used. In addition, a user interface via
HTTP should be provided to allow the user to explore and download data.
Archiving should not necessarily be part of data management, but rather be
implemented as an external module, e.g. as a scheduled and configurable
cron job.
The second component of the data management will be a database. This
database will be used to store the metadata for the files that are stored
inside the local file storage. This includes the files path or location, de-
fined parameters, like for instance the period of validity for a product, and
additional metadata that will be extracted from each file. This metadata
database will enable queries for files that are interdependent.
The general interplay of the components is shown in figure 10.
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Figure 10: Data management components interplay

4.1.4 Monitoring

The monitoring system will include a logging and a metrics mechanism.
Those will be centralized, retrieve the information of all system components
through defined interfaces, store the results temporarily in an own storage
instance and expose the data via individual web frontends.
The logs can be used to identify and resolve problems or bugs in the modules.
The metrics will be an indicator of the systems performance, e.g. CPU or
RAM utilization. They will help in decision making regarding the system’s
scaling.
This can be seen in figure 11.

Monitoring system

Storage

Logging Metrics

Logs Metrics

Logging frontend Metrics frontend
use use

Figure 11: Monitoring components interplay
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4.1.5 Central module storage

Each module has to be encapsulated inside an isolated environment, pro-
viding all of the algorithms or programs dependencies, e.g. interpreter, li-
braries, configurations, etc. This approach will prevent version conflicts or
compatibility problems when running multiple modules, while also keeping
the amount of software and libraries installed on the processing nodes mini-
mal.
To make those environments accessible to all processing nodes they will be
stored on a remote software or module storage. That enables the dynamic
use of the environments while processing without the need of storing them
on each node permanently.

4.2 System environments
According to the requirements the system must provide different environ-
ments for each of the following purposes:

• Operational processing

• Testing

• Postprocessing

Those environments have to be isolated so they can’t interfere with each
other.
As the name suggests the operational processing environment will be used
for just that. Only modules and workflows that were tested and approved to
run will be deployed there.
The testing environment will be used to test and prepare the modules and
their respective configuration for the operational processing. In this envi-
ronment the modules can be analyzed - for example with regard to resource
consumption (CPU, Memory, etc) - and the correct behaviour of the pro-
cessed can be ensured.
The postprocessing environment will be used for manually triggered work-
flows. This can for instance be useful if data has to be processed once again
for a certain time period.

4.3 Naming conventions
The naming conventions of the new system will be according to the DLR
naming convention guidelines. All file names will contain informations about
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the producer, the data acquisition source and method, the product level,
type and mode and the year, month, day, hour and minutes and seconds for
the start and end time of the products validity period.
Those naming conventions are shown in detail in table 3 in appendix A.2. A
filename could therefore look like the following example:
DLR_GNSS_GCG_L2_DIXV02_NC_EUROPE_2016-01-30T00-00-00_2016-01-30T00-05-00_030_D.nc

4.4 Handling of interdependent datasets
The resolving of dependencies between datasets is an important requirement
of the system. (See section 2.1) As described with the CHAMP processing
system (see section 3.1.4), the new system has to provide a mechanism that
can be used to describe dependencies between datasets and automatically
resolve those by finding and providing files that fulfill the specified relations.
Therefore there has to be a possibilitie for the user to define rules which
describe the relations of files.
The new system will for this purpose rely on a database, which will be used
to store metadata about the files currently stored in the system. Therefore
each new file has to undergo a decoding process. This process will extract
the metadata that will be stored. Furthermore there has to be a process that
keeps the file storage and the metadata base in sync, e.g. delete metadata of
files that are not present in the system anymore.
This database will enable the user to describe relations between files with
common query languages like SQL. The sequence of the resolving process is
depicted in figure 12.

Process management Matching process Database

Process requests data matches

Query database

Results

Convert results

Return results to Process management

Figure 12: Sequence of resolving process

When the results are returned to the process management it has to decide
how to proceed. Based on the amount of returned results or matches, the fol-
lowing processes could be skipped or one or more processes will be spawned.
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4.5 Metadata datamodel
The metadata model of the system will be rather simplistic and universal.
The goal is to implement a data model that can contain an arbitrary amount
of metadata about the files without the need to change the data model when
establishing new attributes. Therefore a dynamic data model will be used.
It will contain static attributes, like the index, the location of the file and
a product time, which indicates or represents the files validity. Additionally
the data model will include an attribute that can take arbitrary data. This
model is shown in figure 13.

C Metadata

id : Integer
path : String
product_time : Timestamp
metadata : Any

Figure 13: Data model schema

There will be a table for every product type stored in the system, which will
be derived from the data model shown in figure 13. The name of the table
will be equal to the name of the product type.

4.6 Management jobs
There are jobs in the system that will run in the same way as a user-defined
job, but they will be used to handle certain aspects of the system, which the
user should not get in contact with. They will be created and managed by
the systems administrators and developers.
These jobs are used to reduce the complexity of the configuration process for
the user. They offer increased simplicity and transparency.

4.6.1 Data management

The process of data and metadata handling is an example for a management
job. It will be handled in the background as soon as a user-defined job or
an external source produces data that will be stored inside the system. This
data will be called artifacts in the following sections. Those artifacts will be
stored in a dedicated storage area.
There are different ways in which incoming data can be handled. These are
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shown in figure 14.
When new files are stored in the file storage the system has to respond to
those changes. Therefore it has to detect these.
At first the job will generate a file name prefix, which will follow the naming
conventions of the system. It will then copy the file from the artifact storage
to its destination storage location.
Afterwards a decoding module will be started if the metadata of this file type
has to be stored. The decoding module will extract all necessary metadata
and return them as a result. Afterwards they will be submitted and stored
into the database.
This step will be skipped if the metadata of the incoming data does not need
to be stored.

File storage Processing system Metadata database

Incoming data

Recognize changes

Generate file name prefix

Apply naming conventions

Copy file to destination

alt [Metadata needs to be stored]
Start decoder

Return metadata

Submit new metadata

Return results

Create .meta file

Figure 14: Incoming data sequence

This job also needs to have exception handling, in case any of the modules
fails, including communication errors with the database or errors that occur
while writing to the storage, etc. This should trigger the process management
to retry executing the job a certain amount of times and clean up and give
out notifications to the administrators if the amount of retries is exceeded.

4.6.2 Garbage collection

To avoid storing files that are not frequently or are not used at all in the
system a periodically running management job will be established that is
responsible of cleaning up those files. This kind of task is commonly known
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as a garbage collection. The garbage collector will be responsible for cleaning
up resources like for instance artifacts that are not longer needed.
The metadata database will contain informations about the expiration of
file types. When this date passes the files will be deleted from the storage
system. The process manag then will detect those changes and remove the
corresponding metadata from the metadata database.
This process is shown in figure 15.

File storage Processing system Metadata database

Data expires

Delete files

Detect changes

Remove metadata

Results

Figure 15: Garbage collection sequence

4.7 Creation of new modules
Modules are the building blocks of the system. Every algorithm or process
that will run in the system will be provided as a module. A new module can
be integrated into the system by following three steps:

Implementation The process or algorithm has to be implementede. Ideally
it should provide configuration possibilities via configuration files or
CLI options and arguments.

Environment The implemented module has to be wrapped in an environ-
ment, so that it can be uploaded to the module storage and can there-
fore be utilized by the systems hosts.

Workflow A new workflow has to be configured to use the provided module.
For that parameters like the expected input location and the location
of output files or directories have to be known and specified.

An interface to describe a workflow step is shown in figure 16.
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C Input
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Figure 16: Overview of the module definition

The configuration includes the input, output and the module itself.
The input will be specified by type and source of the file. The inputs will
then be put in a list. This list can also be empty, meaning that a process
does not depend on any input.
The output will be specified with a type as well. Additionally it has a des-
tination attribute, which describes, where the output will be stored. The
output also gets stored in a list, which can be empty, meaning that the pro-
cess does not produce any output files that need to be stored.
The module itself will be configured using the input and output lists. Fur-
thermore it will take parameters like the identification of the used module
and the schedule or events it has to be triggered on.
Additionally to defining the modules dependencies in the workflow configu-
ration, the module itself must implement a method for the injection of the
input. This should be done by using CLI arguments or options. This way the
input files can be provided on file system paths, which will then be handed
to the module. An example process can be called as shown in listing 3.

example-module -f /tmp/inputfile.txt -o /tmp/output

Listing 3: Example module call

This call starts the example-module with the input flag pointing to the file
available on the path /tmp/inputfile.txt and specifies the output direc-
tory under /tmp/output.
CLI options and arguments can be implemented rather simply, but the im-
plementation itself depends on the used programming language. An example
implementation for Python is shown in listing 4 and an example implemen-
tation for C/C++ is shown in listing 5.
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import click

@click.command()
@click.option("-f" , "–file" , help="Define input file" )
@click.option("-o" , "–output" , help="Define output

directory" )↪→

def main(file, output):
print(file)
print(output)

Listing 4: Python CLI options using Click

Using the Click Python library CLI options and arguments can be imple-
mented using decorators as shown in listing 4. Python decorators are wrap-
pers around functions, that can be used to modify the way a function is
called. In this case Click injects CLI options and arguments into the func-
tion.
Click is only an example for an argument parsing library. Other examples
are argparse or optparse.
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#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
int opt;

while((opt = getopt(argc, argv, "fo:" )) != -1) {
switch(opt) {

case "f" :
printf("Input-File: %c" , opt);
break;

case "o" :
printf("Output: %c" , opt);
break;

case "?" :
printf("Unknown option" );
break;

}
}

return 0;
}

Listing 5: C CLI options using getopt

A program written in C can retrieve options and arguments by using the
getopt function as shown in listing 5. It can be used to loop over all input
parameters and further process them, e.g. store the values in variables.
Other libraries used for argument parsing in the C programming language
are for instance argp or opt.
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4.8 User-defined modules
The user-defined modules in the system can be categorized into four groups.

• No dependencies

• One dependency

• Two or more dependencies

• External dependencies

Modules without dependencies do not depend on any files that need to be
processed. Those modules can for instance be used to synchronize an exter-
nal data source with the file storage.
Modules with one dependency do not necessarily need to query the metadata
database for matching files but can be started as soon as the needed file ar-
rives.
Modules with two or more dependencies most likely will have to query the
metadata database for matching files. This query than returns the paths to
the corresponding files so they can be transferred.
Modules with external dependencies can download those external files di-
rectly. Those files can not be filtered by the metadata database.
The example in figure 17 shows the general workflow for each module.
If an event occurs, e.g. new incoming data (see section 4.6.1), the corre-
sponding modules will be started.
At first there has to be a check for the data dependencies of the started
module.
If the module needs a single file or multiple files that aren’t related to each
other, the files can just be requested from the file storage.
If it needs multiple interdependent files, those files have to be filtered and
matched. For that a query on the database will be used. The result will
either be the paths of the corresponding files or a signal for the module, e.g.
an empty list, that there are currently no files that resolve those dependen-
cies, so the module gets stopped. If the query is successful and returns the
paths, the files will be requested from the file storage and will be handed to
the module.
If there are any dependencies on external files, e.g. from FTP- / HTTP-
Server, they will be downloaded and handed to the module as well.
Afterwards the module will start, process the files and return the results,
which will then be stored in the file storage.
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Processing system Metadata database File storage External source

Module should run

alt [Depends on internal files]

alt [Dependencies between files]
Query matching files

File paths

Request files

Files

alt [Depends on external files]
Request files

Files

Spawn module

Results

Store results

Result

Figure 17: General sequence

4.9 Postprocessing
The postprocessing sequence just slightly differs from the general workflow.
The main difference is that the process can be configured individually. There-
fore the postprocessing can be used to set up processing workflows for certain
files, time periods or other criteria. This way a workflow can for instance be
configured to process data that was measured in a specific timespan or to
process data in another resolution - temporal, geospatial, etc.
This sequence is shown in figure 18.
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User
File storage Processing system Metadata database External source

Deploy configuration files & start process

Recognize request

alt [Depends on internal files]

alt [Dependencies between files]
Request matching files

File paths

Request files

Files

alt [Depends on external files]
Request files

Files

Start process

Results

Store results

Provide results & notifications

Figure 18: Postprocessing sequence
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5 Supporting technologies
This section covers technologies that represent the state of the art and can
be used for the implementation of a distributed processing system.

5.1 Containers
Containers are used for OS-level virtualization. They are isolated environ-
ments that bundle software, libraries, configurations and other dependencies
and are executed by a container engine or a container runtime. Since con-
tainers are run by a single operating-system kernel, they are more lightweight
than Virtual machines which is shown in table 2 by comparing resource con-
sumption between KVM7 and Docker while running a web server. (See Chae
et al., 2019)

KVM Docker
Average idle of CPU 47.52 % 75.79 %
Average memory usage 740 MB 248 MB

Table 2: Performance comparison of KVM and Docker while
running a web server (Chae et al., 2019)

Figure 19 shows the architectural differences between containers and virtual
machines.

7Kernel Virtual Machine; software providing a full virtualization solution
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(a) Virtual machines architecture (b) Container architecture

Figure 19: Architectural differences between Containers and Virtual
Machines (Bauer, 2018)

Containers are created out of images, that contain all necessary parts of
the virtualized operating system, except the kernel. They are split up into
multiple layers, which describe the dependencies and are read-only. New
layers can be added by using an existing image as a base image and adding
new dependencies. When a container gets created out of an image, it adds
a writable layer on top of the image, which takes the temporary changes of
the container. This architecture is shown in figure 20. (See Liebel, 2017)

Figure 20: Layered architecture of container images (Own
illustration based on Liebel, 2017)
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Images can also be versioned, which means that multiple instances or ver-
sions of an image can exist. This can be used to provide multiple versions
of the software or libraries inside the image (e.g. python:2.7.17 and
python:3.7.5) or to provide images with different base images or oper-
ating systems (e.g. python:3.7.5-buster and python:3.7.5-alpine).
To make images accessible to other hosts they can be uploaded and stored on
a remote image storage solution, also known as image or container registry.
There are multiple providers and implementations for cloud- and self-hosted
container registries, including the Docker Registry (or Docker Hub), Google
Cloud Container Registry, GitLab Container Registry, etc.
Since containers are isolated environments which provide all necessary de-
pendencies of the software, they increase reproducibility and enable the user
to run nearly any kind of software that is provided in form of a container
on systems that have a container engine installed. Therefore, no additional
software, like module dependencies or libaries, need to be installed on the
executing hosts.
Most container engines store the logs of the containers on the host system.
This enables the aggregation and forwarding of the logs to a central logging
component.
The goal is to provide every module of the system as a container to create
the isolated environments the modules will be encapsulated in. This way
some of the requirements for the system, including choice of implementation
language, error handling and logging, will be faced or even fulfilled.

5.2 Container Engines
As described in the previous section every module should run as a container,
which enables the user to be free regarding the choice of programming lan-
guage. Therefore the system must provide a container engine or runtime to
be able to execute containers or container images. With respect to figure 8
the container engine will provide the modules environments and execute the
modules. Therefore this section focusses on some of the currently available
container engines and describes differences between them.

5.2.1 Docker

Docker was released by dotCloud, which was rebranded to Docker Inc. later,
in March 2013. The Docker software is a set of products that use OS-level
virtualization to deliver software in packages called containers.
Docker includes the following three components:
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Docker Daemon or dockerd, which runs on the Docker host and is respon-
sible for the centralised management of and the communication with
the containers.

Docker Client or docker, which is a CLI that allows the user to communi-
cate with the Docker daemon.

Docker API which is the centralized interface between the other two com-
ponents. It takes all commands submitted via the Docker client and
processes them using the Docker daemon.

Docker uses kernel namespaces and cgroups to isolate container instances
from each other and from the host system.
The internals of Docker before and after version 1.11 are shown in figure 21.
(See Liebel, 2017)

Figure 21: Docker software stack before and after version 1.11
(Liebel, 2017)

Docker containers will be created and configured using a Dockerfile. This file
includes sequences of commands, that describe the structure of the container.
An example of a Dockerfile using an interpreted language - in this case Python
- is shown in appendix A.5.1. An example for a Dockerfile using a compiled
language - in this case Golang - and a multi-stage build is shown in appendix
A.5.2.
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While the container of an interpreted language must always provide the in-
terpreter, they tend to be bigger in size than images for compiled languages,
since the compiled languages can utilize the multi-stage build system and run
the binaries in minimalistic environments, e.g. Alpine Linux8. The current
container image of Alpine Linux is only 5 Megabytes9 in size, compared to
Debians size of 114 Megabytes10.

5.2.2 rkt

CoreOS - now Container Linux (See Red Hat, Inc., 2019b) - is a Linux oper-
ating system which targets the minification of the system by managing most
parts of the OS itself by using containers. It initially used to be a dedicated
platform for Docker containers but started developing an own container en-
gine implementation.
This container engine is rkt, which was introduced in 2014. It’s main fo-
cus points are security, reliability and scalability and it spawns container
processes via the rkt-binaries, rather than running a central daemon. (See
Liebel, 2017)
rkt provides a pod-native approach. That means it’s core execution unit is a
pod, which can include multiple applications or containers and acts synony-
mous to the Kubernetes pod concept. Additionally rkt enables the user to
configure the execution environment, which eases the integration with other
systems. (See Red Hat, Inc., 2019d)

5.2.3 cri-o

CRI-O is a lightweight, open source implementation of the Kubernetes CRI
(Container Runtime Interface11), which aims to replace Docker or rkt as
Kubernetes container engine and provide all the tools and software needed
for that. It is developed by maintainers and contributors from companies like
Red Hat, Intel, Suse, IBM and others. It enables using any OCI-compliant
runtime as the container runtime for running Pods on Kubernetes. The
currently supported container runtimes are runc and Kata Containers, but
in principle any OCI-conformant runtime can be used. (See cri-o, 2019) The
software consists of the following components:

8Alpine Linux is a very lightweight Linux distribution
9Last update: 21.10.2019 (See: https://hub.docker.com/_/alpine)

10Last update: 17.10.2019 (See: https://hub.docker.com/_/debian)
11Kubernetes CRI enables any container runtime to be connected to Kubernetes by

using the CRI as a commuication middleware between Kubernetes and the runtime
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OCI compatible runtime like for instance runc, Kata Containers or Clear
Containers

containers/storage is a library that provides layer management and cre-
ation of root file systems for containers

containers/image is a library used for communication with container reg-
istries including pulling and pushing images

networking is described by the CNI and can be set up by using CNI plugins
such as Flannel, Weave or Calico

monitoring is a utility that detects Out Of Memory situations and handles
container monitoring and logging

Choice

The container engine of choice for the new system is Docker. This is mainly
due to existing experiences and the ease of use of the software. This choice
is explained in more detail in section 6.2.

5.3 Container-orchestration systems
A container-orchestration system is used to manage containers in scalable
cluster environments. This includes the management of resources, scheduling,
replicating and monitoring containers, health checking containers and cluster
nodes as well as load balancing across container replication setups. With
regard to figure 8 and 9 in this system the container-orchestration system
takes the role of the scheduler inside the process management.

5.3.1 Docker Swarm

Docker Swarm (or simply Swarm) is a cluster management and orchestration
platform embedded in the Docker Engine. It is built using a separated project
called swarmkit. It is used to implement Docker’s orchestration layer and is
integrated into the Docker CLI.
A swarm is a cluster of at least one or more Docker hosts. The nodes of this
cluster can act as managers, workers or both of these.
The central structure or main computation unit of a swarm is a service. It
is used to define the tasks to run on the nodes. Services are described in a
declarative way, which means that the configuration of a service describes the
desired state and the software will determine the steps to reach that state.
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Services can also be exposed or made available externally by using an ingress
load balancing. (See Docker Inc, 2019)

5.3.2 Kubernetes

Kubernetes is a Container-orchestration system for automated application
deployment, scaling and management across clusters of hosts. It is unopin-
ionated in regards to the container engine or tools, like for instance Docker.
It was originally designed and developed by Google. The first announcement
was in 2014 and version 1.0 was released in July 2015. With this release
Google partnered with the Linux Foundation to establish the Cloud Native
Computing Foundation (CNCF).
The main features of Kubernetes are Scale-out possiblities, Load balancing,
Resource request and limits, Self healing and Rolling updates. (See Liebel,
2017; The Kubernetes Authors, 2019c)
Some of it’s commonly used API objects are as follows:

• Pods

• Deployments

• Services

• Volumes

• ConfigMaps

• Secrets

Choice

Kubernetes is the container-orchestration system of choice for the new sys-
tem. This is due to its open source implementation, the set of features and
the broad community behind the software. More details will follow in section
6.3.

5.4 Job and workflow systems
This section covers frameworks and tools for job or workflow based systems.
In the scope of this system a job or workflow system will enable the user to
configure chains of processes and define events that should trigger a job run,
e.g. a time interval or arrival of new data. Additionally the job and workflow
system will be responsible to commuicate with the container-orchestration
system to spawn the modules respectively as shown in figure 9.

5.4.1 Apache Airflow

Apache Airflow is a Python framework used to implement workflows and
handle those workflows scheduling. It consists out of five main components,
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which are as follows:

Database is used to monitor process definitions and to store metadata
about the modules and their scheduling.

Scheduler is used to used to start modules based on their defined schedule.

Executor is called by the scheduler and used to execute the modules.

CLI is used for system management via the command line.

Web interface is used for system management and monitoring.

To improve scalability Airflow provides a variety of configuration options and
supports third-party software to be used with the system.
By default SQLite will be used as the systems database. Since SQLite only
supports one concurrent write at a time, concurrent writing operations can
queue up and slow the system down. To scale up the system, the database
can therefore be replaced. Due to the fact that Airflow was built using the
SQLAlchemy Python library to interact with the database, every database
compatible with SQLAlchemy can be used, even though MySQL or Post-
greSQL are the recommended RDBMS.
Regarding the executor, the system uses a sequential approach by default.
This executor can be replaced with the LocalExecutor for local concurrent
execution. To support horizontal scaling Airflow also provides a CeleryEx-
ecutor, which uses Celery to distribute workloads, and a KubernetesExecutor,
which uses Kubernetes to spawn and process workloads on distributed sys-
tems.
To describe workflows, Airflow uses the concept of DAGs, which are imple-
mented and described using Python. The processing steps of each workflow
are built upon Operators, which are provided by Airflow, but can also be im-
plemented individually. (See The Apache Software Foundation, 2019; Stoffers
et al., 2019; SQLite Consortium, 2019)

5.4.2 Argo Project

The Argo Project contains multiple components that are specifically devel-
oped for the use with Kubernetes. The goal of the project is to provide
software that can be used to implement automated container-based systems.
The currently available components are:
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• Workflows and Pipelines

• Continuous Delivery

• Rollouts

• Events

While the Continuous Delivery and Rollouts components are mainly used
for Git Operations and the management of Kubernetes Deployments update
strategies, the Workflows and Pipelines and Events components can be used
to implement event based processing systems.
The Workflows and Pipelines component provides a container native work-
flow engine for Kubernetes which supports both DAG and step based work-
flows. It is implemented using Kubernetes Custom Resource Definition
(CRD). Therefore setting up Argo on a Kubernetes cluster includes deploy-
ing a controller, which monitors and manages those custom resources, and
configuring Rule-based Access Control (RBAC) permissions.
Argo Workflows and Pipelines manages process scheduling and retries, han-
dles input and output of the modules and provides mechanisms to implement
conditionals, which enable the definition of conditions when a job should be
skipped, loops or exit handlers, which will run, even when a job failed and
can be used for cleanup or notification modules.
By default those workflows will be deployed and triggered using the Argo CLI.
(See Argo Project, 2019) Using the Argo Events component those workflows
can be triggered by events of different types, which include the following:

• S312

• File

• Streams

• Webhooks13

• Schedule or Calendar

• Kubernetes Resources

Choice

Due to it’s interplay with Kubernetes and the rather simple configuration
and setup process, Argo is the choice of workflow tool for this system. This
will be explained in more detail in 6.4.1 and 6.4.2.

5.5 File storage
This section focusses on possible solutions for the file storage of the system.
As shown in figure 10 the file storage will be part of the data management. It
will be responsible for storing all kinds of data or files needed for processing.

12Amazon S3 compatible events
13Typically HTTP POST request to defined URL endpoints
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5.5.1 Minio

MinIO is an object storage system, which is compatible with the Amazon
S3 cloud storage service’s API. It is implemented in the Go programming
language and most suitable for storing unstructured data, e.g. photos, videos,
log files, etc. File sizes of up to 5 Terabytes are possible. It also provides
many features that Amazon S3 also offers, including Bucket14 Lifecycle, which
can be used for automatic garbage collection, and S3 events, which will be
triggered by create, update or delete data transactions.
Minio is made of two components:

• Minio Server

• Minio Client
The Minio Server is main server software running on a dedicated host and
provides the main functionalities for storage and communication. Further-
more it can be used to create a distributed storage system by setting up a
Minio Cluster.
The Minio Client is a CLI used for communication with the Minio Server.
It provides commands for server and cluster configuration, data replication
and data transactions and can communicate with remote servers via HTTP.
Additionally Minio provides SDKs15 including libraries for Java, Go, Python,
etc. (See MinIO, Inc., 2019; Wernicke, 2017)

5.5.2 GlusterFS

GlusterFS is a free and open source, scalable, distributed network filesystem
most suitable for data-intensive tasks like media streaming, data analysis or
cloud storage. It can scale to serveral Petabyes and can handle thousands
of clients, which - in the scope of GlusterFS - are devices or machines that
mount a GlusterFS volume. Furthermore it is POSIX16 compatible and can
use any on-disk filesystem that supports extended attributes. (See Gluster,
2019; Wernicke, 2017)
In GlusterFS a volume represents a mounting point and is a collection of
bricks. A brick is the basic unit of storage in GlusterFS and is built on an
export directory on a server. GlusterFS supports different kinds of volumes,
which are comparable to the different types of RAIDs17.

14Amazon S3 unit of organization comparible to directories
15Software Development Kits
16„The Portable Operating System Interface refers to a family of related standards“

specified by the IEEE Computer Society (The Open Group, 2017)
17(Redundant Array of Inexpensive Disks) storage virtualization technology used to

combine multiple physical disks into one or more logical units
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5.5.3 Apache Hadoop / HDFS

Apache Hadoop is a project of the Apache Software Foundation whose goal is
the development of open source software for reliable, scalable and distributed
computing. The project includes a number of modules, e.g. Hadoop YARN
(job scheduling and cluster resource management), Hadoop Ozone (Object
storage), Hadoop Submarine (machine learning engine) and the Hadoop Dis-
tributed File System (HDFS).
HDFS is a distributed file system designed to handle very large files and
provide high-throughput access to application data. It’s main goals are de-
tection of hardware failures and quick, automatic recovery, handling files that
are typically Gigabytes to Terabytes in size and providing streaming access
to those files.
The HDFS can be accessed via the provided FileSystem Java API, a C lan-
guage wrapper for this Java API, a REST API or by using a NFS gateway.
(See Apache Software Foundation, 2019)

Choice

The most basic choice for this part of the system could be each processing
nodes filesystem or network storage, e.g. NFS shares. Since the goal is to
avoid single points of failure a more sophisticated solution or tool is preferred.
Thus Minio is chosen as the systems file storage. Additionally to its replica-
tion and sharding capabilities, Minio has a high degree of compatibility to
Argo Workflows and Argo Events as artifact storage and event emitter. This
will be described in more detail in section 6.5.1.

5.6 Database
This section covers database management systems that can be used to im-
plement a metadata database for the system. As seen in figure 10 is part of
the system’s data management and will be responsible for storing metadata
about the files that are present in the system.

5.6.1 PostgreSQL

PostgreSQL is an open source RDBMS. It additionally provides a class con-
cept, which is based on unique object ids that will be used to unambiguously
represent instances of a class. A class can be a table. The rows of this table
are the instances or the objects of this class. Inheritance is provided by allow-
ing the user to derive child tables. Those characteristics make PostgreSQL
an object-relational database management system.
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PostgreSQL can be clustered or replicated using a master-slave architecture
- namely Streaming Replication18, which is available since version 9.0 - or by
using third party software, e.g. pgpool as a synchronized replication server.
This pooling service acts as a middleware between the application and the
database and can send SQL queries or transactions to multiple database in-
stances at the same time. (See Weinstabl, 2004)
PostgreSQL natively supports sharding since version 11.0. (See Haas, 2018)

5.6.2 Redis

Redis is a key-value NoSQL database. Its main focus point is performance,
which is often limited by the hosts network connection rather than its hard-
ware. The data gets stored inside the memory, which leads to the fact that
the amount of data Redis can store is limited. Despite this the data can be
persisted using snapshots in regular intervals or a log file. It supports five
different data types, atomic operations and provides commands to enable the
use of transactions.
Since Redis does not provide support for JOIN-operations, it is particularly
suitable for data that is not in relation to other data.
It also supports to setup a master-slave architecture to enable horizontal scal-
ing, but those clusters are not strictly consistent, but only eventually con-
sistent, which is a consistency model in distributed database environments
describing the lack of data consistency that can occure while the database
nodes are synchronizing.
Sharding is currently not supported, but has to be handled on application
level. (See Hollosi, 2012)

5.6.3 MongoDB

MongoDB is a document-based NoSQL database. It groups documents in col-
lections, which are similiar to tables in relational databases. The data inside
those collections, which will be stored in BSON19 documents, is schemaless.
That means that the documents can contain arbitrary data. MongoDB lim-
its the size of the BSON documents for efficiency reasons to 16 megabytes.
MongoDB provides the possibility to arrange servers in Replication Sets to
guarantee availability in the event of a server failure. Replication Sets are
also crucial for data security, since they mirror the data on multiple servers
to avoid data loss in case of a server failure.
The Replication Sets are based on a master-slave architecture. The special

18See https://wiki.postgresql.org/wiki/Streaming_Replication
19BSON is a binary data format based on JSON (See http://bsonspec.org)
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feature is that the master is not fixed, but will be selected by the servers in-
volved. The master is called Primary, the slaves are called Secodary. Writing
operations are exclusively handled by the Primary, while reading operations
can also be delegated to the Secondaries.
The servers of a Replication Set monitor each other. In case the Primary
fails, a Secondary will be voted and promoted to the new Primary. In most
cases this will be the Secondary with the most recent data state. To be pro-
moted the Secondary needs a majority of the votes. This majority rule is
intended to prevent the existence of two Primaries. Therefore a Replication
Set should always consist out of an odd number of servers.
MongoDB also supports sharding based on a sharding-key to avoid single
points of failure. (See Hollosi, 2012)

Choice

Due to existing experience, the broad community behind it and the possibility
to query data via SQL, PostgreSQL is the database management system of
choice. Additionally it offers a simple solution for the dynamic metadata
field, which will be discussed in more detail in section 6.5.2.
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6 Implementation
This section covers the implementation details of the system.

6.1 General
This sections gives general informations and an overview over the system.

6.1.1 Hardware

The prototype system was implemented on four hosts, each with 8 CPU cores,
16 GB of memory and 256 GB of storage, provided by a VMware vSphere
cluster.
The hosts run a CentOS 7 operating system.

6.1.2 Software

This section gives an overview of the software used in the system and it’s
purpose.

Docker is the Container engine of the system. It ensures the availability
of container images, through building or downloading from a registry,
allows to run container and provides the logs of those.

Kubernetes is the container-orchestration system of the processing system.
It spans a virtual cluster and network, provided by Calico, and allows
to run or deploy containers on this cluster.

Argo Workflows and Pipelines is the workflow engine of the system, which
takes in YAML configurations and parses those to workflow descrip-
tions. Argo is used to trigger job runs in the order defined by the
configuration, handle in- and output of as well as provide the commu-
nication between the modules.

Argo Events is an event-based dependency manager, which is used to trig-
ger and parameterize Argo Workflows based on events, e.g. incoming
data or calendar scheduling.

Minio is used as the systems storage. All files are stored as objects and are
made accessible by using Minios HTTP interface.

PostgreSQL is used as the database to store the metadata of all files in the
system, enabling the users to query for files that are interdependent.
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Figure 22 shows the systems architecture in respect to figure 8 and the com-
ponents interplay with the concrete software used for implementation to un-
terstand the role each software takes in the system.

Data management

Process management

Jobs

Central module storage

Monitoring

PostgreSQL Minio

KubernetesArgo

Docker

Docker registry

Elasticsearch Prometheus

Logs & Metrics

spawn jobs

manages
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Figure 22: Software and components interplay

6.2 Container Engine
The container engine on the prototype system is Docker. This software is
used due to already existing experience and the easy of use of the software.
Additionally Docker currently is the default container runtime of Kubernetes.
Therefore no additional configurations regarding the runtime have to be made
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to set up the system.
Since the hosts run CentOS 7, the up-to-date Docker packages are not in the
default repositories. Therefore the Docker CE repository is added before the
software will be installed. The version used in the system is 19.03.04.
The daemon is configured to use cgroupfs as its cgroupdriver, instead of the
systemd driver recommended by Kubernetes. This is due to some problems
that occured during the development process while using systemd.
The daemons configuration file can be seen in appendix A.3.

6.3 Container-orchestration system
Kubernetes is the container-orchestration system used for implementing the
system. This is due to its open source implementation, the set of features and
the broad community behind the software. The version used in the system
is 15.3.
The Kubernetes cluster was initialized using the kubeadm CLI.

Container Network Interface (CNI)

The Container Network Interface (CNI) used in the cluster is Calico, which
was deployed using the default manifests provided by the Calico Project
website.

Package Manager

Helm is a package manager for Kubernetes which enables developers to write
complex manifest templates, which are called Helm Charts and are config-
ured using the corresponding configuration file. It includes the server-sided
service Tiller and the client-side Helm CLI. (See Helm, 2019)
Currently there are the ingress-nginx Ingress controller (See The Kuber-
netes Authors, 2019a) and the MetalLB load balancer (See Anderson, 2019)
deployed which provide external access to the services running inside the
system. Those Charts are deployed using the stable Helm repository.

6.4 Process management
This section covers the process management of the system which is imple-
mented using the components of the Argo Project.
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6.4.1 Argo Workflows and Pipelines

The Argo Workflows and Pipelines module is used to describe the workflows
using YAML. It handles the processing steps or DAGs as well as input and
output handling and communication between modules.
Argo is deployed using the Argo Workflows Helm chart. Therefore the
Argo repository has to be added to helm by executing helm repo add argo
https://argoproj.github.io/argo-helm.
The structure of a workflow definition can be seen in listing 6.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:

# METADATA #
spec:

# WORKFLOW PARAMETERS #
entrypoint:
templates:

# TASK / WORKFLOW TEMPLATES #

Listing 6: Argo Workflow definition structure

The apiVersion references the Argo API, which is followed by the kind op-
tion, which in this case is a workflow. Those options are mandatory for every
Kubernetes manifest.
The metadata section contains metadata about the workflow, e.g. the names-
pace where it has to be deployed to or the name prefix for the pods spawned
for that workflow.
The spec section contains the configuration of the workflow itself. It can
contain parameters like the maximum duration a workflow can take before
being shut down (activeDeadlineSeconds) or the duration exited pods have
to be persisted for before being garbage collected (ttlSecondsAfterFinished).
The most important options in this section are the templates, which define
the tasks of the job itself, and the entrypoint, which defines the starting point
of the workflow. Additionally there is an option for an onExit handler, which
defines a task or workflow that will be executed, regardless of the main work-
flows result.
The templates section of the workflow definition contains a list of templates.
Those templates will always contain a name and a description, what should
be executed in this template. There are multiple options for that descrip-
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tion20, but in this case the most commonly used ones are:

container specifies a template that will execute a single container. (See
appendix A.6.1)

script specifies a template which works similiar to the container template,
but additionally offers the possiblity to access the standard output of
the container. (See appendix A.6.2)

steps specifies a template that will execute a list of templates referenced
by name in the given order. Those steps can be run sequentially or in
parallel. (See appendix A.6.3)

dag specifies a template that executes templates ordered by using a Directed
Acyclic Graph. (See appendix A.6.4)

6.4.2 Argo Events

The Argo Events module is used to react to events like incoming data, calen-
dar events, etc. It provides logical connections between those event sources
and grants the user to let the workflows respond respectively.
This module is deployed using the Argo Events Helm chart, which needs the
Argo repository to be enabled as well.
To register a workflow that reacts on certain events, four components have
to be defined:

Event source is used to describe the event to listen to. This can for example
be a calendar event, which is similiar to a cronjob, or a S3 bucket, which
throws events in case of data transactions. (See appendix A.7.1)

Gateway consumes the events specified in the event source, converts them
into cloudevents specification21 compliant events and sends them to the
corresponding sensor. (See appendix A.7.2)

Sensor receives the events from the gateway and triggers jobs based on
defined logical connections between the event dependencies. (See ap-
pendix A.7.3)

Workflow describes the tasks that have to be executed or triggered. Since
those workflows are managed by the Argo Workflows and Pipelines

20See https://github.com/argoproj/argo/blob/master/pkg/apis/workflow/v1a
lpha1/workflow_types.go#L241

21See https://github.com/cloudevents/spec
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module the configuration process is the same. Because these workflows
must not be triggered immediatly when deployed to the cluster, they
can for instance be wrapped inside a ConfigMap to be persisted and
made available cluster-wide. (See appendix A.7.4)

6.5 Data management
This section focusses on the implementation details of the data management
system including the metadata database and the file storage.

6.5.1 File storage

Minio used for the file storage. The reasons for this are the support by Argo
and it’s simplicity, including the HTTP interface which handles data or file
transfers and takes Kubernetes volume configurations off the user.
This way event listeners or sensors for specified prefixes and suffixes can be
registred on certain buckets which grants the user a great amount of control
about what kind of files will trigger each job.
Argo also uses Minio as an artifact storage. This means specified output
files of the modules will be uploaded to the artifact bucket automatically.
Afterwards they are processed by the data management job and moved to
their intended destination.
Furthermore Minio supports a bucket lifecycle so that an automatic garbage
collection of files can be configured. For example a bucket can have a lifecycle
of a certain timespan which will cause Minio to delete all files older than this
regularly.
In the current setup Minio is running on a dedicated host outside of the
Kubernetes cluster.
Every product type has it’s own bucket. That means that for example all files
or products related to the scintillation will be stored inside the scintillation
bucket.

6.5.2 Metadata database and datamodel

The metadata database is a PostgreSQL instance. This enables the users to
use the established SQL standard when defining the dependencies between
files.
PostgreSQL is deployed using the Helm chart of the stable repository.
Just as with the file storage, every product type has it’s own namespace
which in case of the database is represented by a table. All tables for the
products have the same structure, which includes a unique id for every row,
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a timestamp, which represents the product time and enables the module to
determine the expiration of the data, the files location, including the Minio
bucket and object key, and the metadata extracted by the corresponding
decoder. The metadata will be stored in JSON format and can therefore
contain arbitrary data.
Listing 7 shows how JSON data can be queried using SQL.

SELECT
metadata -» 'expiration' as expiration

FROM
product

ORDER BY
expiration;

Listing 7: Example SQL JSON query

The database communication is provided by the metadata module or CLI.
It is implemented using Python and the Python library SQLAlchemy. This
library provides an Object Relational Mapper, which means that Python
classes and objects will be mapped to SQL tables and tuples. It includes
functions to manipulate and query the data, which internally get transformed
into SQL queries.
Currently the CLI contains three subcommands to add, delete and query for
data. It implements the data model shown in figure 13 by using a Python
class with the described attributes.
New data is added using the add command. The program takes in a JSON
file containing the product name, the files location, the product time and
the additional metadata. It then checks if the table corresponding to the
product type already exists. If it does not it will be created automatically
by deriving from the defined class (see section 4.5) and adding the product
or table name. Finally the data gets commited to the database.
Deletion of database entries is done by calling the delete command. This
command is intended to be used by a garbage collection job that keeps the
metadata database in sync with the data basis or the filesystem. It’s input
arguments are a table or product name and a file key. The program then
checks if the specified table exists. If it does the entry containing the given
file path will be deleted.
Data can be queried by using the query command. It therefore takes an SQL
query, which will then be forwarded to the database.
Listing 8 shows an example for a more complex query.
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SELECT
pre.bucket,
pre.path,
chb.bucket,
chb.path

FROM
pretopo as pre,
chbias as chb

WHERE
(CASE age(pre.product_time, chb.product_time) < INTERVAL

'0' THEN -age(pre.product_time, chb.product_time) ELSE
age(pre.product_time, chb.product_time)) < INTERVAL '20
minutes'

↪→

↪→

↪→

AND
age(now(), pre.product_time) < INTERVAL '1 day' ;

Listing 8: Example SQL query

Using the query module the result will be converted into a list. The following
steps can depend on the output. So for example a module that needs to be
run for every match gets spawned an n-amount of times, where n equals the
number of found matches. Those modules will then be executed in parallel.
This process is shown in figure 23.
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Query database

Matches found
yes no

Spawn modules

Module 1 Module 2 Module n

Figure 23: Sequence of a module which uses data matching

6.6 Logging
The logging solution is implemented using the Elastic Stack (ELK)22. This
includes Elasticsearch23 and Kibana24. This provides the use of a centralized
log storage combined with a search engine, utilized and made accessible by
a web frontend. This enables the user to query for certain data or logs us-
ing a graphical user interface, storing those queries and creating dashboards,
which improve usability and transparency.
To deliver the logs from the hosts to the Elasticsearch instance, there has to
be a log forwarder, which in this case is Fluent-Bit25 due to it’s lightweight
architecture and the focus on Docker and Kubernetes environments.
Those products are deployed to the cluster and configured using the elastic-
search and fluent-bit Helm charts out of the stable repository.

22Open source product stack developed by Elasticsearch B.V.
23Distributed, JSON-based search- and analytics-engine (See Elasticsearch B.V., 2019)
24Elasticsearch web frontend used for data visualization (See Elasticsearch B.V., 2019)
25Open source log forwarder aimed towards the use with Docker and Kubernetes (See

Treasure Data, 2019)
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6.7 Metrics
The metrics solution is implemented using Prometheus26 due to its wide
adoption and ease of use. It is deployed and configured using the prometheus
stable Helm chart. This provides a centralized metrics solution, that can be
set up and configured using a Kubernetes CRD. The default web frontend
for the Prometheus deployment is Grafana. This enables the exploration of
metrics of the whole system or single components of the system.

6.8 Infrastructure
This section covers general infrastructure elements of the final system.

6.8.1 CI/CD

For Continuous Integration / Continuous Delivery (CI/CD) or deployments
of most resources to the system the GitLab CI is used. Therefore the user
does not need to have any knowledge about the communication with the
system but can use a preconfigured automatic deployment system instead.
Also by controlling the deployments to the system with the CI system the
corresponding repository will always be a clear indicator for the status and
the configuration of the deployment.
The cluster is configured in a GitLab group so every repository inside this
group has access to it. Clusters can also be configured on repository level
which will be prioritized over group clusters.
The CI’s pipelines are triggered by commits or pushes to the repositories.
Based on the branch targeted by the commit, different actions can be exe-
cuted, e.g. commits to the master branch can trigger a production pipeline
and commits to every branch except the master can trigger a testing pipeline.
Since Kubernetes uses namespaces to create isolated environments, each job
should have it’s own namespace, which helps to keep the monitoring of the
system more simple. GitLab uses the concept of namespaces by default so
there is no additional setup needed. The namespace of each job or reposi-
tory is generated out of it’s repositories name, ID and environment27 name.
For example a pipeline in a repository with the title example-job, the ID 45
and the environment production will deploy all manifests to the namespace
example-job-45-production.

26Open source monitoring and time series database system (See Prometheus Authors,
2019)

27GitLab Environments provide a way to track deployments. At least one environment
must be available to deploy manifests to Kubernetes.
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Appendix A.4 shows an example GitLab CI configuration, which deploys all
Kubernetes manifests inside the repository to a Kubernetes cluster config-
ured in GitLab. The file has to be placed inside the repository for GitLab to
run the defined pipelines. To ease the process of creating a new job for the
user, repository templates will be created, which provide a basic directory
structure, licenses, documentation and GitLab CI files.

6.8.2 System environments

The three different environments of the system, which are described in section
4.2, will be realised by setting up multiple instances of the system. Therefore
each environment will have it’s dedicated hosts. Those can easily be initial-
ized using the Ansible playbook.
The deployments to the environments will be handled by the GitLab CI. For
example pushes to an arbitrary branch, except the master branch, of the
repository will deploy the manifests to the testing environment. Pushes to
the master branch will trigger a deployment to the operational processing en-
vironment and remove the deployed resources from the testing environment.
To trigger a postprocessing workflow there are multiple possible solutions.

Argo CLI The currently used solution would be to submit the postprocess-
ing workflows via the Argo CLI. This way no additional server-side
setup would be needed but the communication with the cluster has to
be configured on the users device.

Argo Events It would also be possible to register Argo Events resources on
postprocessing S3 buckets, which start workflows as soon as the user
stores configurations of the workflow inside the bucket. Since Argo
Events also provides support for Slack28, the triggering and parametriza-
tion of postprocessing workflows via text messages would be possible.

6.8.3 Image registry

An image registry allows the storage and distribution of container images.
Dockers default registry is the Docker Hub (See https://hub.docker.com),
which is based on the Docker registry. This registry can also be run locally
by using the registry container image provided by Docker. (See https:
//hub.docker.com/_/registry) This way the images can be stored locally
and therefore kept internally and private.
In this system a Docker Registry is setup outside of the Kubernetes cluster.

28Slack is a cloud-based proprietary instant messaging platform developed by Slack
Technologies (Wikipedia, 2019b)
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6.8.4 Utilities

To keep the process of configuration easy for the user, a utilities container is
provided.
This container contains modules which will make the communication with
the systems resources easier. It is also used in the management jobs.
The container includes the following modules and functions:

metadata The metadata module contains functions to communicate with
the database.

• add
• query
• delete

mc The mc module contains functions to communicate with the Minio server.

• find

mail The mail module allows to send mail notifications, e.g. if a job failed
and needs investigation.

key-decode The key-decode module is used to decode the S3 keys received
via Argo Events.

create-prefix The create-prefix module is used to generate a file name prefix
based on the current date, time and a given time format. This tool is
used in management jobs to guarantee the naming conventions.

6.9 Setup
The initial setup of the system was realized using an Ansible Playbook. A
Playbook is a collection of tasks (called Plays) Ansible should execute on a
specific pool of hosts to orchestrate, configure, administer or deploy a system.
(See Red Hat, Inc., 2019a)
An example of a plays definition is shown in listing 9. This simple play
instructs Ansible to use the yum package manager to install the packages
vim and htop.
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- name: Install extras
yum:

name: "{{ packages }}"
state: present

vars:
packages:

- vim
- htop

Listing 9: Ansible Play example

Those Plays can be grouped by Roles. In Ansible roles can be used to form
groups out of lists of plays. Assigning a role to a group of hosts (or a set of
groups, or host patterns, etc.) implies that they should implement a specific
behavior. Roles can include certain variable values or defaults. The file
structure of Ansible roles make them redistributable, reusable components
allowing to share logic or behaviour among playbooks. (See Red Hat, Inc.,
2019a)
The implemented playbook includes the following roles:

common The role common adds the EPEL29 repository and installs com-
mon packages.

selinux The role selinux disables the SELinux30 module since it is not fully
supported by Docker and Kubernetes yet.

docker The role docker installs Dockers prerequisites, adds the Docker Com-
munity Edition repository, installs Docker CE and docker-compose31

and configures, reloads and enables the Docker daemon.

iptables The role iptables enables the net.bridge.bridge-nf-call-ip6tables and
net.bridge.bridge-nf-call-iptables to ensure correct networking capabil-
ities for Kubernetes.

swap The role swap disables all swap partitions of the hosts since they are
not supported by Kubernetes.

29„EPEL (Extra Packages for Enterprise Linux) is a Fedora Special Interest Group that
creates, maintains, and manages a high quality set of additional packages for Enterprise
Linux, including, but not limited to, Red Hat Enterprise Linux (RHEL), CentOS and
Scientific Linux (SL), Oracle Linux (OL)“ (Red Hat, Inc., 2019c)

30Security-Enhanced Linux
31Tool for running applications containing multiple container
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firewalld The role firewalld configures all ports required for Kubernetes’
communication.

kubernetes The role kubernetes adds the Kubernetes repository, installs
kubeadm and kubeletand starts and enables the kubelet service.

master The role master is limited to the master group. It installs kubectl,
creates a user, initializes the Kubernetes cluster while storing the join
command needed by the workers and installs Calico inside the cluster.

workers The role workers use the join command, stored while executing the
master role, to integrate the worker hosts into the cluster.

In order to run the playbook Ansible has to be installed. This can be done
by executing the command pip install ansible.
The command ansible-playbook <PATH/TO/PLAYBOOK/ rolls out the play-
book to the specified hosts.
The hosts are defined in an Inventory file. By default Ansible looks for
this file under /etc/ansible/hosts. Listing 10 shows an example for an
Inventory file which specifies the hosts by their respective hostnames.

all:
hosts:
children:

master:
hosts: k8s-master-01

workers:
hosts: k8s-worker-0[1:3]

Listing 10: Example Ansible Inventory file

6.10 Management jobs
This section covers some of the implementation details of the management
jobs.

6.10.1 Data handling

Incoming data can originate from external or internal sources. The manage-
ment job which handles incoming data is implemented using an event listener
from Argo Events. It listens on the artifact bucket on the Minio storage
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server. The incoming events are then filtered by prefix and suffix. This way
the configuration to use for the data handling job will be determinded. If
there is no configuration which matches the incoming events prefix or suffix,
no job will be spawned.
This job takes five input parameters:

• S3 bucket

• S3 key

• Destination bucket

• Decoder

• File name

The S3 bucket and key will be extracted from the incoming event. The des-
tination bucket specifies the location, where the file will be transfered to.
The decoder specifies, whether the incoming file should be decoded and meta-
data should be stored and which decoder should be used. After the database
commit with the new metadata finished, an empty file will be created on
the local storage which symbolizes the presence of metadata for this file in
the metadata database. This file extends the name of the incoming file by a
.meta extension.
Since all artifacts are stored as archived files and are automatically extracted
by Argo in the download process, the incoming data can either be a file or a
directory. The file handler respects that, but if the incoming data is a single
file the original file name gets lost. Therefore a file name can be specified in
the job configuration to allow for a homogeneous naming convention system.
The sequence of the workflow is shown in figure 24.
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Handler registred for incoming file type
yes no

Decode s3 key Generate file prefix

Download and extract artifact

Apply generated prefix

Upload files to Minio

Decode files

Commit metadata to database

new file events

Figure 24: Sequence of the file handling job

The job checks all available configurations. If there are any matching prefixes
and suffixes, the job will be spawned with the matched configuration.
Since the S3 object key delivered by the event is a URL encoded string32

(e.g. npsm%2F2019%2F294%2F08%2F20191021_0800_negrd.gif) the key has
to be decoded.
The decoding happens concurrently to the generation of the file’s prefix. The
prefix follows the naming convention mentioned in section 4.6.1.
After both modules finished the file will be downloaded and extracted. The
next module then prepares the data for the local storage by renaming and
applying the generated prefix to it.
The files will then be uploaded to the local storage and decoded. The meta-
data will then be commited to the database.

32URI encoding is a an encoding mechanism, that enables the use of „unsafe“ characters
in URLs by using a percent (%) sign as an escape character (Berners-Lee, 1994)
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If this job fails it will additionally be retried until a maximum of 2 times.

6.10.2 Deleted data

The management job, which handles deleted data or the garbage collection,
is also implemented using an Argo event listener. It watches for the deletion
of files in certain buckets. Based on that it spawns a module which takes
the S3 key of the deleted file, decodes it and queries the database for the
corresponding metadata entry which is then deleted.
The sequence of the job is shown in figure 25.

Decode s3 key

Query database

Delete entry

yes
Entry in database?

no

File deleted

Figure 25: Sequence of the garbage collection job

6.11 Example user-defined jobs
This section shows some examples of user-defined jobs and modules that are
currently running in the system.
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6.11.1 Scintillation synchronization

The scintillation synchronization job (short: sync-sct) is used to synchronize
the local storage with an external data source. It is meant to run in certain
time intervals and synchronize data from different stations. Therefore the
stations are defined in a ConfigMap.
In the first step all files of this ConfigMap get mounted to a module which
than generates a list of the stations.
The subsequent step takes the output of the first step and spawns a sync-sct
module for every item or every station in the generated list, which will then
run in parallel. Those modules will then authenticate and communicate with
the corresponding FTP server and download new data. Afterwards the new
files will be uploaded to the local storage.
This workflow is visualized in figure 26.

Get configuration files

Generate list based on configuration files

Sync 1 Sync 2 Sync n

Spawn module for each list entry

Figure 26: Sequence of scintillation synchronization job

6.11.2 Scintillation plot

The scintillation plot job (short: plot-sct) is used to generate plots visualizing
scintillation events. It is meant to be run when a scintillation file gets created
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or updated in the local storage.
The job is started when an event for a new scintillation file is received.
It then extracts the file location out of the event and downloads the file.
Afterwards the plot-sct module starts and generates the plots. Therefore a
ConfigMap, containing and describing all products that shall be produced,
is mounted. The plots are then stored as artifacts and will be uploaded to
the corresponding bucket in the last step.
The configuration of this workflow can be seen in appendix A.7. There is
also an example postprocessing workflow definition for this module shown in
appendix A.8.
An output example of this module using the data from the Bahir Dar station
is shown in figure 27.

Figure 27: Output example of the scintillation plot module

6.11.3 Neustrelitz plasmasphere model

The Neustrelitz plasmasphere model job (short: npsm) is used to generate
plots visualizing the total electron content distribution of the plasmasphere.
It is meant to run in certain time intervals and depends on the F10.7, which
is provided as an external file by NASA OMNIWeb Service.
In the first step the file containing the F10.7 is downloaded. This happens
every time the process runs since new data is expanded to the file.
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The second step runs the model which depends on the time, date and the
F10.7. The time and date default to the current time. This includes the year,
day of year and the hour. The F10.7 gets extractet from the fluxtable which
was provided in step 1. Therefore the file gets read, outliers get removed and
the value nearest to the input time gets picked.

6.11.4 CHAMP Processors

To visualize an example for the data matching three modules of the CHAMP
satellite mission were implemented with dummy workflows.

• PRETOP-O

• CHBIAS

• ADDBIAS

The sequence for this chain can be seen in figure 28, where the used modules
are marked by a red box.
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PRETOP-O PRETOP-D

CHBIAS

ADDBIAS

iCH-AI-3-BIAS+ip-nz_...

iCH-AI-3-RCSO-bin+lr_YYYY...

iCH-AI-3-TCSD-bin+lr_YYYY...

GRACE-TLE

EXT-GR-TLE+gfz...

GPS Orbit
Forecast

CH-OG-3-RSO+CTS-GPS-YYYY...
LRGEN-GR

(10 sec)

CH-AI-1-LR-ORB+ip-nz...
15 - 16 files per day for each orbit

CH-AI-1-LR+ip-nz...
1 file per day

iCH-AI-3-TCC+int_lr_bin_...

ELDAS-GR

GFZ

GR1-0-RDC-DMP-SC+SP_...lrnx
per INPUT/GRACE-TS and direct renaming
GR-1-0-RDC-DMP-SC-T+SP_...lrnx

iGR-AI-4-DENS+??_...

Figure 28: Sequence of the example CHAMP modules (Own
representation of Wehrenpfennig, 2002)

The PRETOP-O and the CHBIAS jobs listen on the creation of JSON
files with the sample metadata in the corresponding buckets. The files then
get copied and decoded. The decoder takes the metadata in the incoming
JSON file and injects the product name, the bucket and the object key.
Afterwards the data will be inserted into the database. Once this module
is finished an empty file with the name of the original file plus the .meta
extension is copied to the folder of the original file. This file symbolizes the
existance of metadata in the database.
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The ADDBIAS job listens on the creation of .meta files on the PRETOP-
O and CHBIAS buckets. This means that the sensor of the job has multiple
dependencies. Thus it has to connect the dependencies logically. In this case
they are connected by a logical OR, which means that the creation of a .meta
file in any of the locations triggers the job.
The job’s first module will then query the database with the query previously
shown in listing 8. For every row of the result of the query a module will be
spawned which is responsible for the further processing.

6.12 Postprocessing
This section covers the usage or creation of postprocessing workflows.
The postprocessing works similiar to the operational system, but differ in
the way the processes will be triggered. The postprocessing workflows will
be triggered manually by the user and not by events.
The postprocessing workflows will be deployed and started or submitted us-
ing the Argo CLI. Configurations have to be provided through ConfigMaps.
Specific files, that shall be used, have to be placed inside the Minio storage
beforehand.
An example workflow is shown in appendix A.8. This workflow can be started
by calling argo submit -n <NAMESPACE> workflow.yml.
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7 Outlook
This section covers a summary of the new system created in this work and
gives an overview of improvements that can be made in further developments.

7.1 Summary
The newly developed system represents a functional prototype of a process-
ing system. It is capable of creating jobs on a schedule as well as in case
of incoming data or files. Additionally those events can be combined to a
collection of dependencies, for example the incoming of multiple files at a
certain time.
The jobs itself will be defined as workflows - a sequence of processing steps -
which have to have at least one processing step. Each job and each process-
ing step can have input in form of arguments, environment variables or files,
as well as output in form of files or plain text. Those in- and outputs, also
known as artifacts, can be exchanged between the processing steps.
Each processing step runs a module, which is a script or a programm encap-
sulated inside a container. This enables the use of small, reusable modules
regardless of the programming language. The modules will then be scheduled
and executed by a Kubernetes cluster, which majorly enhances the horizontal
scaling possibilities.
All artifacts of the system will be stored in a Minio S3-compatible storage
instance. Thus files are provided by an HTTP interface. Additionally the
web UI grants the user the download and review of the files.
Incoming data are subjected to a decoding process. This process will ex-
tract all metadata from the new file and will upload those to a PostgreSQL
database. The files location as well as it’s time of validity are stored in
dedicated attributes, while additional metadata will be stored as JSON.

7.2 Possibilities of improvement
Since the implemented system is a prototype, not every part of it is in a
finalized state by the time of writing. This section covers possibilities of im-
provement, which became clear during development and usage of the system.
Those improvements can be categorized in four groups:

• Stability

• Security

• Usability
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• General features

7.2.1 Stability

Most of the workflows in the prototype system where used for testing. There-
fore those modules have not been optimized and offer some possibilities of
improvement.

Resource Requests and Limits To ensure that a module only uses the
amount of resources (CPU and Memory) it should need, resource re-
quests and limits should be used. Those are configuration options
provided by Kubernetes to limit the compute resources a container can
use. Those definitions are also used by the Kubernetes scheduler to de-
termine, if a node has enough resources available to run the container.

Volumes Modules that produce a high amount of write operations to the
disk should use volumes. Those volume can be external drives, e.g.
NFS shares. This way the overflow of the hosts storage will be avoided.
Furthermore a clean up strategy can be defined, which allows to con-
figure how the files should be treated once the module finished.

Improvements can also be made to other components of the system by elim-
inating single points of failure. This includes upgrading the system to a
multi-master setup, which means that multiple of the Kubernetes cluster’s
hosts will be promoted to the master role. That way will be avoided, which
will help stabilizing the system in case of a master node failing, thus improv-
ing the availability and reduce the downtime of the system. Additionally the
etcd service33 itself should run as a cluster with an odd amount of members.
(See https://kubernetes.io/docs/tasks/administer-cluster/config
ure-upgrade-etcd/)
To improve data and file availability and reduce downtime in case of the
file storage or the database failing, those components should be run in a
distributed architecture as well.

7.2.2 Security

To increase security all communcation paths should use a secure version of
their respective protocolls, e.g. HTTPS. Therefore certificates should be
provided and configured to be used by the corresponding services.

33consistent key value store used as Kubernetes’ backing store for all cluster data (See
The Kubernetes Authors, 2019d)
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7.2.3 Usability

Since currently there is no support for wildcards or subdomains in the host
network DNS, the access to the dashboards provided by the system is not
user friendly. Configuring the support should enable the user to access those
dashboards through URLs like argo.<domain>.de or minio.<domain>.de.
Another possibility is to use external proxies which forward the requests to
the cluster, so the services are made accessible by visiting the proxies domain.
Another improvement to the usability of the system can be to ease the pro-
cess of configuring workflows by providing a graphical user interface, which
enables the user to configure his workflows using graphical elements rather
than writing YAML.

7.2.4 Features

In the current system only one of the required environments is implemented,
which is the testing environment. The other environments have to be created
using the Ansible Playbook. Furthermore the environments have to be con-
figured to be optimized for their use-case, like for example high availability
for the operational processing environment. (See 7.2.1)
Another possibility of improvement could be the relocation of the systems
components. For example the mid-term archive could be run inside, the
logging and metrics services could be run outside of the cluster. Running
all components inside a cluster would improve isolation of the different en-
vironments of the system. Running the services outside the clusters could
improve accessibility since information about all environments are bundled
in a centralized location.
Another feature could be the implementation of a REST API. Currently the
query module directly communicates with the database. Thus the user has
to know the location and the basic model of the database. To avoid this
the REST API could be used to abstract the database communication. This
would enable validation of queries, manipulation of results - thereby mini-
mization of the query module - and would therefore improve the ease of use
for the user.
In the current system the logs and metrics are visualized by two indepen-
dent web frontends - Kibana and Grafana. Since Elastic also provides an
APM34 module, which also integrates with Prometheus, the perfomance
monitoring can also be integrated into the Kibana frontend. (See https:
//www.elastic.co/de/what-is/kubernetes-monitoring) This way logs
and metrics can be bundled on a central platform and the amount of software

34Application Performance Monitoring
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products in the system can be reduced.

7.2.5 Interfaces

The developed system provides the fundamental basis for operational pro-
cessing. To benefit from that, interfaces, documentations and guidelines have
to be defined. Those should describe and make clear to the user how a mod-
ule can be wrapped inside of a container and how it can be integrated into
the system afterwards. This includes for example code snippets for com-
monly used setups, templates for Argo’s Event sources, Sensors, Gateways
and Workflows as well as guidelines for in- and output handling.
Since those things were not implemented in this work, they will have to be
developed in the future.
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Glossary
Amazon S3 (Simple Storage Server) is a cloud-based object storage service

provided by Amazon with focus on scalibility and high availability. 45,
46, 54, 60, 61, 64–66, 72

Ansible is an IT automation tool, which can be used to configure systems,
deploy software, and orchestrate more advanced IT tasks such as con-
tinuous deployments or zero downtime rolling updates (Red Hat, Inc.,
2019a). 60–63, 74

API Application Programming Interface. 17, 43, 46, 53, 74, 76–79

Artifacts are a list of files and directories created by a job once it finishes
(GitLab Inc., 2019b). 28–30, 47, 55, 63, 64, 68, 72, 76

Calico is an open source networking and network security solution for con-
tainers, virtual machines, and native host-based workloads (Project
Calico, 2019). 42, 50, 52, 63, see CNI

Continuous Integration / Continuous Delivery (CI/CD) are method-
ologies to automatically execute scripts to test, deploy and deliver soft-
ware and minimize the chance of introducing errors by human interac-
tions (GitLab Inc., 2019a). 59

CLI Command-line Interface. 17, 30–33, 40, 42, 44–46, 52, 56, 60, 71, 77

CNCF Cloud Native Computing Foundation. 43

Container Network Interface (CNI) is a specification and a collection
of libraries to implement container network plugins (Cloud Native Com-
puting Foundation, 2019). 42, 52, see container

ConfigMap is a Kubernetes API object that allows decoupling of the con-
figuration artifacts from the image content to keep containerized ap-
plications portable (The Kubernetes Authors, 2019d). 43, 55, 67, 68,
71

Container-orchestration systems allow users to control when containers
start and stop, group them into clusters, and coordinate all of the pro-
cesses that compose an application. Container orchestration tools al-
low users to guide container deployment and automate updates, health
monitoring, and failover procedures. (Hewlett Packard Enterprise De-
velopment LP, 2019). 42, 43, 50, 52, 78, see container
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Containers are a way to use OS-level virtualization. They are isolated envi-
ronments that bundle software and all it’s dependencies, e.g. libraries,
configurations, etc. (Kofler, 2014; Liebel, 2017). i, 37–45, 50, 51, 54,
60, 61, 72, 76, 77, 94, see OS-level virtualization

Custom Resource Definitions (CRD) are extensions of the Kubernetes
API that can be used to create custom Kubernetes objects (The Ku-
bernetes Authors, 2019d). 45, 59

DAG Directed Acyclic Graph. 44, 45, 53, 54, 95

Deployments is a Kubernetes API object, which provides declarative up-
dates for Pods and ReplicaSets (The Kubernetes Authors, 2019d). 43,
45, see pod & ReplicaSet

DIMS Data Information and Management System. 12, 18–21

Docker is a set of products that use OS-level virtualization to deliver soft-
ware in packages called containers (Liebel, 2017). i, 37, 39–43, 50–52,
58, 60, 62, 90

Garbage collection is the process of automatically cleaning up ressources
that are not used any more. 5, 6, 24, 30, 46, 53, 55, 66

Horizontal scaling describes the process of scaling by increasing the amount
of nodes in a system rather than adding resources to the existing nodes
(vertical scaling). 7, 16, 44, 79

Ingress is a Kubernetes API object that manages external access to the
services in a cluster (The Kubernetes Authors, 2019d). 77

Ingress Controller is the software responsible for managing the Ingress re-
source in Kubernetes (The Kubernetes Authors, 2019d). 52, see ingress

kubeadm is a CLI for creating and managing Kubernetes clusters (The
Kubernetes Authors, 2019b). 52, 63, see Kubernetes

kubectl is a CLI for running commands against Kubernetes clusters (The
Kubernetes Authors, 2019d). 63, see Kubernetes

kubelet is the primary node agent that runs on each Kubernetes node (The
Kubernetes Authors, 2019d). 63, see Kubernetes
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Kubernetes is a container-orchestration system for automated application
deployment, scaling and management across clusters of hosts (Liebel,
2017; The Kubernetes Authors, 2019c). i, 41, 43–45, 50–53, 55, 58–60,
62, 63, 72, 73, 76–79, see container-orchestration system

Load Balancer is a software that implements and provides load balancing
strategies and mechanisms. 52, see load balancing

Load Balancing refers to efficiently distributing incoming network traffic
across a group of servers (NGINX Inc., 2019). 43, 78

Namespace is a Kubernetes API object which helps creating isolated envi-
ronments (The Kubernetes Authors, 2019d). 53, 55, 59

Object storage is a storage architecture that manages data as objects, in-
stead of files or blocks. Object stores are supposed to raise the level of
abstraction by moving functionalities, like space management, into the
storage device itself (Factor et al., 2005). 46, 47

Open Container Initiative (OCI) is an open governance structure aim-
ing to create open industry standards around container formats and
runtimes (The Linux Foundation, 2019). 41, 42

OS-level virtualization refers to a virtualization mechanism, that does
without real virtual machines, but rather uses the common kernel and
parts of the host’s file system (Kofler, 2014). 37, 39, 77

Pod is a Kubernetes API object representing the smallest deployable unit
of computation in Kubernetes (The Kubernetes Authors, 2019d). 41,
43, 53, 77, 78

PSM Processing System Management. 19–21

Rule-based Access Control (RBAC) is Kubernetes default method of
controlling access to resources based on the roles of individual users
(The Kubernetes Authors, 2019d). 45

RDBMS Relational Database Management System. 44, 47, 79

ReplicaSet is a Kubernetes API object that is used to maintain a stable set
of replica Pods running at any given time (The Kubernetes Authors,
2019d). 77, see pod
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Scale-Out synonym for horizontal scaling. 7, 43, see horizontal scaling

Secret is a Kubernetes API object that allows storage and management of
sensitive information, like passwords, tokens and keys (The Kubernetes
Authors, 2019d). 43

Service is a Kubernetes API object that is used to expose applications or
ports (The Kubernetes Authors, 2019d). 43, see pod

Sharding describes the process of automatic splitting of data on several
servers. 7, 47–49

Single Point of Failure describes a part of a system that, in case of its
failure, will stop the entire system from working (Wikipedia, 2019a).
7, 47, 49, 73

Structured Query Language (SQL) is a standardized language, that al-
lows the user the communication with compatible RDBMS, including
querying and manipulating data (Steiner, 2017). 48, 55–57

Virtual Machines are a way to emulate virtual hardware (CPU, RAM,
storage, network, etc.) and allow to run arbitrary operating systems
on this virtual host (Kofler, 2014). 37, 78

Volume is a Kubernetes API object that can be used to persist data by
connecting it to storage drivers (The Kubernetes Authors, 2019d). 43,
55

YAML is a human friendly data serialization standard for all programming
languages (The YAML Project, 2019). 50, 53, 74
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A.2 Naming Conventions
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Table 3: Naming conventions
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A.3 Docker daemon configuration

{
"exec-opts": ["native.cgroupdriver=cgroupfs" ],
"log-driver": "json-file" ,
"log-opts": {

"max-size": "100m"
},
"storage-driver": "overlay2" ,
"storage-opts": ["overlay2.override_kernel_check=true" ]

}

Listing 11: Docker daemon configuration
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A.4 GitLab CI configuration

image: roffe/kubectl:latest

deploy:
stage: deploy
environment:

name: deploy
tags:

- centos7
- python

script:
- kubectl delete -f gateway/ || echo "No gateways to delete"
- kubectl delete -f sensor/ || echo "No sensors to delete"
- kubectl apply -f configmaps/
- kubectl apply -f rbac/
- kubectl apply -f secrets/
- kubectl apply -f gateway/
- kubectl apply -f sensor/

only:
- master

Listing 12: GitLab CI configuration example
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A.5 Dockerfile examples
A.5.1 Python

FROM python:3.7.4-alpine

WORKDIR /opt/app

ADD src/ .
ADD setup.py .

RUN pip install .

CMD ["npsm", "–help"]

Listing 13: Dockerfile example using the NPSM module written in
Python
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A.5.2 Golang

######## BUILD STAGE #######
FROM golang:latest as builder

WORKDIR /opt/app

COPY go.mod go.sum ./
RUN go mod download

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o main .

######## RUN STAGE #######
FROM alpine:latest

WORKDIR /opt/app

RUN apk –no-cache add ca-certificates
COPY –from=builder /opt/app/main .

EXPOSE 8080

CMD ["./main"]

Listing 14: Multistage Dockerfile example using Golang

93



A APPENDICES A.6 Argo configuration examples

A.6 Argo configuration examples
A.6.1 Container template

- name: npsm
container:

image: registry-endpoint:5000/npsm
command:

- npsm
args:

- 2019
- 294
- 13

Listing 15: Argo container template example

A.6.2 Script template

- name: decode
script:

image: registry-endpoint:5000/utilities
command:

- key-decode
args:

- "npsm%2F2019%2F294%2F08%2F20191021_0800_negrd.gif"

Listing 16: Argo script template example

A.6.3 Steps template

- name: npsm-steps-workflow
steps:

- - name: decode-key
template: decode

- - name: npsm-process
template: npsm

Listing 17: Argo steps template example
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A.6.4 DAG template

- name: npsm-dag-workflow
dag:

tasks:
- name: decode-key

template: decode
- name: npsm-process

template: npsm
dependencies:

- decode-key

Listing 18: Argo DAG template example
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A.7 Example process configuration
A.7.1 Event source

apiVersion: v1
kind: ConfigMap
metadata:

name: plot-sct-event-source
labels:

argo-events-event-source-version: v0.10
data:

scintillation: |
bucket:

name: scintillation
endpoint: minio-endpoint:9090
events:

- s3:ObjectCreated:*
filter:

# prefix: ""
suffix: ".sct"

insecure: true
accessKey:

name: plot-sct-keys-secret
key: accesskey

secretKey:
name: plot-sct-keys-secret
key: secretkey

Listing 19: Event source configuration example
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A.7.2 Gateway

apiVersion: argoproj.io/v1alpha1
kind: Gateway
metadata:

name: plot-sct-gateway
labels:

gateways.argoproj.io/gateway-controller-instanceid: argo-events
argo-events-gateway-version: v0.10

spec:
processorPort: "9330"
eventProtocol:

type: "HTTP"
http:

port: "9300"
template:

metadata:
name: "plot-sct-gateway"
labels:

gateway-name: "plot-sct-gateway"
spec:

containers:
- name: "gateway-client"

image: "argoproj/gateway-client"
imagePullPolicy: "Always"
command: ["/bin/gateway-client" ]

- name: "artifact-gateway"
image: "argoproj/artifact-gateway"
imagePullPolicy: "Always"
command: ["/bin/artifact-gateway" ]

serviceAccountName: "default"
eventSource: "plot-sct-event-source"
eventVersion: "1.0"
type: "artifact"
watchers:

sensors:
- name: "plot-sct-sensor"

Listing 20: Gateway configuration example
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A.7.3 Sensor

apiVersion: argoproj.io/v1alpha1
kind: Sensor
metadata:

name: plot-sct-sensor
labels:

sensors.argoproj.io/sensor-controller-instanceid: argo-events
argo-events-sensor-version: v0.10

spec:
template:

spec:
containers:

- name: "sensor"
image: "argoproj/sensor"
imagePullPolicy: Always

serviceAccountName: default
eventProtocol:

type: "HTTP"
http:

port: "9300"
dependencies:

- name: "plot-sct-gateway:scintillation"
triggers:

- template:
name: plot-sct-trigger
group: argoproj.io
version: v1alpha1
kind: Workflow
source:

configmap:
name: plot-sct-workflow-configmap
key: wf

resourceParameters:
- src:

event: "plot-sct-gateway:scintillation"
path: s3.object.key

dest: spec.templates.0.container.args.1

Listing 21: Sensor configuration example
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A.7.4 Workflow

apiVersion: v1
kind: ConfigMap
metadata:

name: plot-sct-workflow-configmap
data:

wf: |
apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:

generateName: plot-sct-
spec:

ttlSecondsAfterFinished: 21600
activeDeadlineSeconds: 120
entrypoint: plot-sct
volumes:

- name: minio-connection-volume
secret:

secretName: plot-sct-minio-connection
- name: plot-sct-settings

configMap:
name: plot-sct-settings

templates:
- name: plot-sct

container:
image: registry-endpoint:5000/sct-plotting-service:latest
command:

- plot-sct
args:

- "–object-key"
- S3_KEY_PLACEHOLDER
- "–cfg-plotting"
- "settings/plotting/settings.json"

volumeMounts:
- name: minio-connection-volume

mountPath: /opt/app/settings/minio/
- name: plot-sct-settings

mountPath: /opt/app/settings/plotting/

Listing 22: Workflow configuration example
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A.8 Example postprocessing workflow
apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:

generateName: plot-sct-post-
spec:

entrypoint: plot-sct-postprocessing

volumes:
- name: minio-connection

secret:
secretName: plot-minio-connection

- name: plot-sct-settings
configMap:

name: plot-settings

arguments:
parameters:

- name: s3-bucket
value: scintillation

templates:
- name: plot-sct-postprocessing

parallelism: 2
steps:

- - name: generator
template: get-keys

- - name: plot-sct-loop
template: plot-sct
arguments:

parameters:
- name: object-key

value: "{{item}}"
withParam: "{{steps.generator.outputs.result}}"

- name: get-keys
script:

image: registry-endpoint:5000/mc-python:latest
volumeMounts:

- name: minio-connection
mountPath: /opt/app/settings/connection.yml

env:
- name: MINIO_BUCKET

value: "{{workflow.parameters.s3-bucket}}"
command:

- "mc"
- "find"

args:
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- "–suffix"
- "*.sct"

- name: plot-sct
inputs:

parameters:
- name: object-key

artifacts:
- name: tmp-sct

path: /tmp/tmp.sct
s3:

bucket: "{{workflow.parameters.src-s3-bucket}}"
key: "{{inputs.parameters.object-key}}"
endpoint: minio-endpoint:9090
accessKeySecret:

name: minio-connection
key: accesskey

secretKeySecret:
name: minio-connection
key: secretkey

container:
image: registry-endpoint:5000/sct-plotting-service:latest
volumeMounts:

- name: plot-settings
mountPath: /opt/app/settings/plotting/

command:
- plot-sct

args:
- "–cfg-plotting"
- "settings/plotting/settings.json"

Listing 23: Workflow configuration for a postprocessing job
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