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Abstract  

Nowadays the concern of finding an efficient algorithm that can answer some of the open questions 

in big data analysis and mining has been gradually arose. Such questions can be regarded by the 

question of representing the data in a meaningful way in which the most useful information 

highlighted. Therefore, the motivation of answering these questions encourage this thesis to 

develop a principle classification algorithm called Efficient sparse signal recovery for big data 

representation for a classification task. In this thesis, we develop a classification principle 

algorithm that is based on the sparse coding for the classification of given test pixel from a 

hyperspectral image. Hyperspectral imagery in remote sensing domain has the characteristic of big 

data in terms of velocity, verity and volume. This data is a set of non-homogenous system that 

expose the ill-posed problem. Thus, a robust and efficient algorithm must be developed to treat 

such data effectively. Sparse representation draws a great attention in hyperspectral image 

representation and analysis. Employing sparsity-based model involved two main problems. Firstly, 

the problem of the representation of an informative dictionary, and secondly the issue of 

implementing a proper optimization problem that can effectively solve the objective function. This 

thesis focuses on the latter aspect while the dictionary issue is also tackled by proposing a 

Geometric dictionary. There have been many algorithms for finding the optimized minimum of 

the well-known objective functionals “least square ” with 𝑙1-norm regularization parameter (in 

statistic is called Lasso and in sparse coding it is known as Basis Pursuit) that lead to the sparsity 

measurement. The minimization of such functionals have some barriers, such as being non-convex 

(non-smooth function). Hence, current algorithms such as greedy algorithms like Orthogonal 

Matching Pursuit (OMP) and even Iterative Reweighted Least Square (IRLS), and Basis Pursuit 

take many iteration and computation to convergent, which is not efficient for computing high 

dimensional dataset. Recently, an adequate numerical solution has been gradually built for 

addressing such optimization problem very effectively. This effective numerical solution is called 

Iterative Shrinkage algorithm motivated by classical Donoho-Johnston shrinkage method. Hence, 

we develop the so-called Iterative Shrinkage algorithm in three phases and apply the developed 

algorithm on four different classes of a hyperspectral image for the classification task. The first 

phase begins with implementing the soft shrinkage thresholding algorithm and follow this in the 

second phase of the development that we inject the steepest descent iteration which can effectively 

deal with the large coefficients and lead to the acceleration of the iterative soft shrinkage. Lastly 

we present an optimization function called Joint sparse measurement comprising of the two 

previous phases which can uniquely represent the relevant dictionary for the given test pixel. The 

experimental results indicate that the developed version of the shrinkage algorithm can effectively 

minimize the objective functional with a fast convergence in terms of iteration steps. In addition, 

the problem of the representation of an informative dictionary is solved by proposing a geometric 

dictionary inspired by the Singular Value Decomposition (SVD) that leads to a lower amount of 

atoms to be presented in each sub-dictionary. The resulting output from the classification of four 

given classes verifies the performance of our proposed efficient signal recovery algorithm.  
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Zusammenfassung 

Heutzutage ist es ein Anliegen, einen effizienten Algorithmus zu finden, der einige der offenen 

Fragen in der Analyse großer Datensätze beantworten kann. Beispielsweise die Darstellung der 

Daten in einer sinnvollen Art und Weise in der die nützlichsten Informationen hervorgehoben 

wurden. Dieses Anliegen erbrachte den Ansatz dieser Arbeit, ein prinzipielles Klassifizierungs-

paket zu entwickeln für die Darstellung großer Datensätze für eine Klassifizierungsaufgabe. In 

dieser Arbeit wird ein Klassifizierungs-Algorithmus basierend auf der sparsamen Kodierung für 

die Klassifizierung eines gegebenen Testpixels aus einem hyperspektralen Bild entwickelt. 

Hyperspektrale Bilder im Fernerkundungsbereich haben die Charakteristik von Big Data in Bezug 

auf Geschwindigkeit, Richtigkeit und Volumen. Bei diesen Daten handelt es sich um ein nicht 

homogenes System, das das ungünstig gestellte Problem aufdeckt. Daher muss ein robuster und 

effizienter Algorithmus entwickelt werden, um solche Daten effektiv zu behandeln. Die spärliche 

Darstellung zieht große Aufmerksamkeit bei der Darstellung und Analyse von hyperspektralen 

Bildern auf sich. Der Einsatz der sparsamen Kodierung beinhaltete zwei Hauptaspekte. Einerseits 

das Problem der Darstellung eines informativen Wörterbuchs, andererseits das Problem der Suche 

nach einer geeigneten Optimierung zur Lösung des Optimierungsproblems. Der Fokus dieser 

Arbeit liegt auf dem zweiten Problem, während das erste Problem auch mit einem geometrischen 

Wörterbuch angegangen wird. Es gibt viele Algorithmen für die Optimierung des bekannten 

Problems der kleinsten Quadrate mit dem Regularisierungsterm der 𝑙1-Norm (in der Statistik, 

Lasso und in der spärlichen Codierung als "Basis Pursuit" bekannt), die zur spärlichen Messung 

führen. Die Minimierung einer solchen Funktion weist einige Barrieren auf, so dass sie nicht 

konvex sind. Vorgeschlagene Algorithmen wie Greedy-Algorithmen so wie Orthogonal Matching 

Pursuit (OMP), Iterative Reweighted Least Square (IRLS) und Basis Pursuit benötigen daher viele 

Iterationen und Berechnungen zum konvergieren, was für die Berechnung von hochdimensionalen 

Datenmengen nicht effizient ist. In letzter Zeit wurde schrittweise eine adäquate numerische 

Lösung entwickelt, um dieses Optimierungsproblem sehr effektiv anzugehen. Diese effektive 

numerische Lösung ist der iterative Shrinkage-Algorithmus, der durch die klassische Donoho-

Johnston-Schrumpfungsmethode motiviert ist. Daher befasst sich diese Arbeit mit der 

Entwicklung des sogenannten iterativen Shrinkage-Algorithmus in drei Stufen. Dabei wird der 

entwickelte Algorithmus auf vier verschiedene Klassen eines hyperspektralen Bildes für die 

Klassifizierungsaufgabe angewendet. Im ersten Stadium beginnen wir mit der Implementierung 

des Soft-Shrinkage-Thresholding-Algorithmus. In der zweiten Stufe der Entwicklung führen wir 

die Iteration mit dem steilsten Abstieg ein, die effektiv mit den großen Koeffizienten umgehen 

kann und die iterative weiche Schrumpfung beschleunigt. Abschließend wird eine 

Optimierungsfunktion, bekannt als Joint-Sparse-Messung, vorgestellt, welche die beiden 

vorherigen Schritte umfasst, die das relevante Wörterbuch für das gegebene Testpixel eindeutig 

darstellen können. Die experimentellen Ergebnisse zeigen, dass die entwickelte Version des 

Shrinkage-Algorithmus das Optimierungsproblem mit einer schnellen Konvergenz effektiv 

minimieren kann. Zusätzlich wird das Problem der Darstellung eines informativen Wörterbuchs 

gelöst, indem ein geometrisches Wörterbuch vorgeschlagen wird, das von Singular Value 

Decomposition (SVD) inspiriert ist. Dies führt dazu, dass in jedem Teilwörterbuch weniger Atome 
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vorhanden sind.Die Ergebnisse der Klassifizierung von vier Klassen belegen die Leistung des 

vorgeschlagenen Optimierungsproblems. 
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Appendix of the efficient sparse signal recovery   

Plots and graphs are presented in appendix. Appendix presents the output of the model and 

promotes some insights of the algorithm behind the proposed sparsity based algorithm. 

Furthermore, the visualization of the dictionary depicted in plots and graphs that are also available 

in the Appendix.  
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Chapter 1 

1.1. Introduction 
Nowadays, the ongoing advancement in Remote Sensing technology provides dailies information 

of the Earth in a complex and huge manner. The proliferation of remote sensing data leads to a 

term called big data. In this digital era, the main focuses in both research and industry is on 

improving our ability to extract knowledge from large and complex collections of digital data. 

Hyperspectral data pose a challenge due to its high dimensionality. Hyperspectral imagery (HSI) 

data contains the more distinguishable information of the objects compare to multispectral imagery 

data. A hyperspectral image has higher spectral resolution than a multispectral image.  

Hyperspectral data due to the higher dimensionality and velocity are prone to be considered as big 

data. Therefore, finding an appropriate model, which can touch every point in data efficiently, is 

the heart of the problem in big data. Sparsity based model have been recently investigated for 

hyperspectral images classification and several improvements have been made in different aspect. 

Indeed, the simplicity and flexibility implementation of sparsity based model make a scalable 

algorithm for parallel processing specially for big data in distributed platforms. In sparse 

representation, pixels can sparsely be represented throughout liner transformation. The assumption 

of sparsity model is that the given test pixel can be represented by a linear combination of a scaler 

multiplication and its subspace, where each subspace is spanned by a few elements from a set of 

basis vectors. Sparsity based model has been applied in many applications, particularly for 

hyperspectral image processing, such as image compression, signal recovery, image classification, 

sparse unmixing (Huang A, Zhang H , Pižurica A., 2017; Iordache, M-D., Bioucas-Dias, J., Plaza, 

A., 2011; Chen C., Chen N., Peng J., 2016; Ülkü, i,. Kizgut E., 2018). Sparsity is a very powerful 

prior for identification of the real signal out of the indirect corrupted/noisy signal measurement. 

When the goal is to find a close approximation of the real measurement, then one tries to recover 

the noisy signal by posing a penalty term called regularization frame. This keeps the approximation 

in a reasonable manner. This procedure is also called sparse representation and when the main 

objective is classification, one tries to find the closest feature vector (pixel) to the given feature 

vector (test pixel) which then by some meaning represent the corresponding class of given vector. 

The representation of the given pixel can be performed by sufficient linearly constrained 

optimization problems or proximity optimization strategy. Generally, transforming an image 

within the linear concept is based on a generative sparsity model introduced by (Olshausen, B.A., 

Field, D.J., 1997). It is built upon learning a dictionary D using a set of training feature dataset. 

The learning dictionary can be employed for sparse representing of the given signal/pixel. This 

type of sparsity typically mentioned in the literature as sparse representation (Razaviyayn, M., 

Tseng, H-W., Luo Z-Q., 2014). Using sparse representation a pixel 𝑥 ∈ 𝑅𝑛 can be modeled as a 

linear combination of a set of vectors {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑚} called atoms in dictionary. A sparsity based 

model is given by,   

𝑚𝑖𝑛
𝛼∈𝑅𝑚

‖𝛼‖0 Subject to  𝑥 = 𝐷𝛼(1.1). 
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Here, 𝐷 ∈ 𝑅𝑛×𝑚 is an underdetermined (𝑛 < 𝑚) system in which 𝑛 is the number of equation and 

𝑚 is the number of unknown.  Due to the underdetermined nature of D, the linear system admits 

infinitely many solutions of which we are seeking for the one with the fewest known zero elements. 

Hence‖𝛼‖0 = {𝑖: 𝛼𝑖 ≠ 0, 𝑖 = 1,2,… ,𝑚}. The atoms in the dictionary 𝐷 are corresponding to the 

training set constructed by a prior-knowledge that can be explained in classification task as a 

supervise learning problem, and 𝛼 ∈ 𝑅𝑚 is the coefficient vector that scales the atoms to the 

corresponding direction as close as given test feature vector. In sparsity based model, the vectors 

in 𝐷 are playing the main role in a better representation of the given image. It should be noted that 

sparsity based model in terms of dictionary has two main routes. In the first rout, the model can 

learn from given training dataset presented in the dictionary, by this means, in every iteration of 

the algorithm the represented training set in the dictionary will be updated along with the 

coefficients until a reasonable choose of atoms acquired, i.e. convergence. This is called dictionary 

learning, and it is frequently an over-complete dictionary where the number of samples are higher 

than the number of dimension space. Second route is concerned about constructing the dictionary 

in prior to the objective function which is also called pre-define dictionary. Both approaches can 

be solved by linear programming or greedy pursuit algorithms such as Basis Pursuit (Basis) (Chen, 

S.S., Donoho, D.L., Saunders, M.A., 2001) or Orthogonal Matching Pursuit (OMP) (Pati, Y.C., 

Rezaiifar, R., Krishnaprasad PS, 1993). For sparsity, dictionary-learning approach many 

optimization methods have been proposed in cooperation with the aforementioned algorithms, 

such as Method of Optimal Direction (MOD), K-SVD, Stochastic Gradient Descent, Lagrange 

Dual Method, and Lasso can be mentioned. The MOD and K-SVD are sharing the same 

weaknesses, being efficient only for lower dimensional dataset (due to the cost of matrix inversion 

and computing pseudoinverse in higher dimensional case) and having the possibility of being stuck 

in local minimum. However, sparse coding can be also done with constructing a dictionary that 

has the most informative representation and then the focus in the problem of finding the optimal 

and sparest solution is to find a fast and accurate optimization strategy with𝑙𝑝-norm where 0 ≤ 𝑝 ≤

1. The optimization problem can be treated by the Greedy Pursuit algorithms, and the other general 

optimization framework are inefficient and normally required too many iterations and 

computations to reach their destination (Elad, 2013). This is especially the case for higher 

dimensional problems like in hyperspectral image processing. In recent years a new family of 

numerical algorithms have been developed that can address the issues mentioned above (Elad, 

2013). This family is called/named the Iterative-Shrinkage algorithms motivated by optimality 

condition. These methods can be also applied to a constrained optimization problem (sub-gradient 

in non-convex chose for𝑝) to accelerate the convergence and take the global minimum. Moreover, 

the elements in dictionary can be orthogonal bases in which the redundant information represents 

the fundamental directions in each sub-space (i.e. full rank matrix), and require custom algorithms 

mentioned above to find the coefficients𝛼. An image typically is represented by pixels, which are 

in a cell grids called entries, containing intensity value. The dataset associated with an image can 

be understood as an array of all pixels. Images that are captured by a normal camera can only cover 

the visible light that is the comfort zone of human eyes (Geladi, L.M.P., Grahn, H.F,. Burger J.E., 
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2007). The optical spectrum covers three channels/bands of electromagnetic waves that in digital 

camera called RGB. Nowadays there are a lot of cameras that can capture images behind the ability 

of human eyes. In remote sensing, sensors are mainly specified based on spectral and spatial 

resolution (e.g. spectral and hyperspectral). Spectral sensor conveys electromagnetic wavelength 

in different portion presented as bands. The only difference that makes the hyperspectral images 

more feasible is their ability in object discrimination, which has variety of applications such as 

precision agriculture, man-made and land cover classification, object detection and more generally 

earth observation and environmental modeling. Hyperspectral imaging in remote sensing is the 

technology of obtaining environmental information by imaging geographical location via airborne 

and space born platforms. Hyperspectral images typically acquire information in hundreds 

contiguous spectral bands ranging from infrared to ultraviolet spectrum. For example, the Airborne 

Visible Infrared Imaging Spectrometer (AVIRIS) provides spectral radiance in 244 contiguous 

spectral bands with 10 nm spectral and 20 m spatial resolution in the range of 0.4 − 2.5𝜇𝑚 (Chang, 

2013). The image data from hyperspectral image is considered as three-dimensional data cube. 

Sparsity based models are great tools for processing and analyzing such big data and can tackle a 

significant amount of problems for satellite imagery. Such that, denoising, pixel-unmixing, 

classification, data fusion and even more possible potential that can be mentioned which depends 

on the designing of the sparsity based model.  

1.2. Problem statement and Motivation  
With recent advent of very high-spectral resolution, hyperspectral imagery contributes to the 

discovery of many material substances, which could not be discovered by multispectral imagery 

(Chang, 2013). This property of hyperspectral data attracts many applications in real world 

problem, such as land management, environmental modeling, geology, urban planning, 

agriculture, ecology and conservation, hazard mapping, and energy management. Therefore, there 

is a significant need rising up to deal with such a complex data, which have the property of big 

data such as, high volume, variety and velocity. Nowadays this data can be archived by increasing 

volume, from Petabytes to Exabyte, because of huge number of bands are taken by continuously 

using airborne/space borne sensor. Thus, hyperspectral image analysis is falling under big data 

characteristic in which hundreds of bands are taken by continuously using hyperspectral 

spectrometer (Anand, R., Veni, S., Aravinth, J., 2017). In addition, hyperspectral images are 

commonly associated with the pixel mixing problems (Dias, J.M.B., Plaza, A., Valls, G.C., 

Scheunders, P., Nasrabadi, N., Chanussot, J., 2013). Due to these special characteristics of 

hyperspectral images, they are not good for daily operations (decision-making). Hence, advanced 

and efficient algorithms must be developed to touch every information in an efficient manner and 

can operate faster (in a streaming manner) than traditional algorithms. Many learning algorithms 

have been proposed for hyperspectral image classification. Supervised and unsupervised 

classification methods of which supervised learning algorithms use a set of observation to train the 

machine and find the best separating hyperplane (logistic regression, support vector machine), and 

unsupervised learning algorithms use a clustering algorithm and is based on the proposed cluster 
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to classify the new given pixel. Nevertheless, processing such big data, especially in streaming 

applications for real world problems, needs fast and simpler algorithm that is scalable on 

distributed platform for parallel computing and perform well in terms of speed and accuracy. 

Therefore, sparsity based models proposed effective algorithms. It turns out that in sparse 

representation many coefficients are not needed (Qazi Sami ul Haq, et all, 2010) and can be 

reduced by restricting them via a regularization parameter 𝑙0≤𝑝≤1 to keep them small and set to zero 

that also lead to avoid overfitting. Hyperspectral data can be considered as a dynamic system in 

which “one can mathematically prove that for dynamic system, sparse controls can always stabilize 

the system, showing once gain the powerful machinery of sparse representations” (Fornasier, M., 

Peter S., 2015). Unlike conventional images with Hyperspectral resolution, hyperspectral images 

are limited by relatively lower spatial resolution. Therefore, the problem of unmixing arises and 

sparsity model proved as a good-based model for pixel unmixing which leads to the state of the 

art endmember extraction. Sparse encoding intrinsically does several tasks such as pixel unmixing, 

denoting and classification. Moreover, sparsity based model solved the problem of feature 

selection in variety of application for both regression and classification tasks (Yan, Hand., Yang, 

J., 2015; Yan, 2013). Hence, the mentioned advantages of sparse representation has motivated us 

to develop a classification principle in the context of sparsity that can solve the mentioned 

problems for hyperspectral images with the focus on classification task. In addition, we propose a 

geometric base dictionary that represent the training data in an informative manner.  

1.3. Contributions 
The contributions of the thesis are as follows: 

We develop a classification principle for high dimensional spectral images called hyperspectral 

imagery in remote sensing domain. The general idea is to model a high spectral feature dimension 

pixel as a column vector, which is represented by some dictionary. The assumption is that, for 

different groups of pixels we have by a-prior knowledge different dictionaries available. The 

classification process results in sparse recovery algorithms, where the recovered sparse vector 

contains basic information for the membership to the one of the classes. 

 We proposed a geometric base dictionary for sparse representation that has the ability to 

sparsify the recover vector at most and contributes to the performance of the proposed 

sparse signal recovery algorithm in this thesis.  

 

 We start with implementing an iterative procedure called Iterative Shrinkage algorithm to 

solve the optimization problem in sparsity-based model specifically designed for 

classification task.   

 

 We develop the Iterative Shrinkage algorithm by reformulating the unconstrained 

optimization problem to a constrained optimization problem, which also leads to the 

acceleration of the convergence using the steepest descent iteration.  It is important to 
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mention that, mapping inverse problems can be formulated as a minimization problem that 

can be solved by forward backward or iterative shrinkage/thresholding in which non-

smooth functions with sparsity constraints can be minimized effectively. Furthermore, the 

soft shrinkage operator cannot deal with the biased estimation of the large coefficients. 

Hence, we injecting a stepwise operator (steepest descent) on the approximation allows 

reducing the bias in practice. Inverse problems can equivalently be formulated as 

constrained/unconstrained minimization problems. Then, optimization theory gets involved to deal 

with these minimization problems (Engl, Heinz Werner, Hanke, Martin, Neubauer, A., 2000). 

 

 Eventually, we have proposed a joint sparsity optimization problem which is comprised of 

the two previous steps and the ability to provide block sparsity measurement of the 

coefficient that leads to a unique way of identifying of that dictionary which is more 

relevant for representation of given pixel.  

 

1.4. Summary of the chapters 
The thesis organized in six chapter.  

Chapter 2 discusses the mathematical concept and understanding of the sparsity based models. 

We walk through some relevant background of linear algebra and explain the sparse approximation 

and different norms. Following up this we cut a glimpse at the optimization problems, and next we 

move forward with two-optimization strategy that are used in this thesis. 

Eventually, we discuss about the dictionary with its importance and about the two main approaches 

for the presentation of the dictionary for the dictionary of sparse coding. 

In chapter 3, an introduction of hyperspectral images, their characteristics and application are 

given. We move forward with the common processing task for hyperspectral images such as pixel-

unmixing, dimensionality reduction. This chapter is also concerned about the classification of 

problem for hyperspectral images and review some approaches such as sparse representation and 

machine learning algorithms to perform the classification task.  

Chapter 4 presents the proposed efficient sparse signal recovery for sparse representation 

classification task. In this chapter, we introduce an efficient sparse signal recovery containing the 

developed version of iterative soft shrinkage algorithm via steepest descent. The proposed efficient 

sparse signal recovery has also the ability of finding the most relevant dictionary for the given test 

sample. Furthermore, we propose a geometric dictionary inspired by singular value decomposition 

concept that contributes to the performance of the proposed sparsity based algorithm in this work. 

The ultimate goal of our proposed sparsity based algorithm is to advance the data analysis and 

mining task for high dimensional data. In other words, the focus is on accelerating a principle 

sparse approximation while preserving the accuracy. Thus, the ultimate goal is a fast convergence. 
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One may acquire a high degree of accuracy with low number of iteration, which shows the power 

of the sparse representation among the most presented algorithms in real world problems such as 

image processing, video processing, and signal processing. Overall, we promise an algorithm that 

needs less iteration to minimize the objective function in sparse representation. We implement an 

Iterative soft shrinkage scheme from scratch, and then designed this sparsity-based model via 

injecting a steepest descent iteration to control the threshold with a parameter called step length. 

Eventually an optimization function proposed, comprising the scheme of iterative soft-shrinkage, 

steepest descent, and a unique property that advance the sparsity model in a block wise manner, 

which leads to the identification of the relevant sub-dictionary for the given test sample.  

Chapter 5 contains the details of applying the proposed efficient sparse signal recovery for 

hyperspectral image classification. We apply the proposed algorithm on a hyperspectral scene form 

Indian Pines. This dataset is from AVIRIS sensor freely available in 200 spectral dimension. For 

the experimental design, we choose four classes including corn, grass-pasture, woods, and stone-

steel-towers. After extracting the corresponding spectral signature of each class based on the 

ground truth, we randomly separate them to 70 present training-set and 30 present test-set. The 

total sample size is 2078 in 200 dimension. The training set used for the constructing the dictionary 

and the test set is used to check the performance of the designed efficient sparse signal recovery 

in terms of accuracy and computation time. The algorithms run in each step of its development on 

the given dictionary and test set. Dictionary presented in each step of the development of our 

scheme is in two form. One time it is present as an over complete dictionary (low rank matrix) 

with all dataset and another time with our proposed geometric dictionary. The performance of the 

proposed algorithm in this experimental design meets the promise of promoting a fast convergence 

and significant accuracy in the classification task. Furthermore, the ideal Geometric dictionary 

contributes in the general performance of our developed algorithm.  The result shows a significant 

enhancement in the convergence of the optimization function after developing the implemented 

shrinkage function for the sparse representation classification. Moreover, the accuracy verifies the 

reliability of the developed scheme. The general result on the classification is as follows: 

 93 % accuracy in the first stage with 150 iterations. 

 93 % accuracy in the second stage with 120 iterations.  

 98 % accuracy with 90 iterations in the complete scheme (efficient sparse signal 

recovery) comprising of iterative soft-shrinkage, injected steepest descent, and block 

sparsity measurement operation.  

 In addition, the result on geometric dictionary demonstrate much higher performance for 

the proposed efficient sparse sigmnal recovery rather over complete dictionary. 

 

Chapter 6 we provide a summary of the objective and the instruction of the whole procedure, and 

we discussed about the potential of the proposed schema and its future direction. Lastly, the 

conclusion is provided.  
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Chapter 2  

2.1. Background 

In this thesis the vector denoted by lowercase letter, e.g. 𝑥 while matrices denoted by uppercase 

letter, e.g. 𝐷 and their elements are presented with indexes such as𝐷𝑖. Assume a dimension of a 

sample being 𝑅𝑛 where n is the dimension space and thus all the samples are concatenated in a 

form of matrix called dictionary 𝐷 ∈ 𝑅𝑛×𝑚 where m is the number of sample. Suppose the number 

of feature dimension is less than the future vector (samples) (n < m), then the dictionary D referred 

as an over-complete dictionary which is refer to an under-determined system, since number of 

unknown is less than number of equation. Sparsity of a vector means that some elements of a 

vector are zero. By using the linear combination of a basis matrix 𝐷 we can represent the given 

feature vector𝑥 ∈ 𝑅𝑛×1. Such that can be given as;  

𝑥 = 𝐷𝛼 (2.1) 

Where 𝛼 denotes the coefficient vector that scales the atoms until finding the corresponding span 

for the given test sample with condition of if only𝑘 ≪ 𝑚 elements of 𝛼are nonzero and the rest are 

zero. Then we call this k-sparse solution for given signal𝑥. 

 

Recall the equation (2.1), the inner product of two vectors, 𝜐 ∈ 𝑅𝑛 and 𝜈 ∈ 𝑅𝑛can be computed as 

(2.2), and the inner product of two matrixes𝑈 ∈ 𝑅𝑛×𝑚, and 𝑉 ∈ 𝑅𝑛×𝑚 can be given by (2.3).   

〈𝜐, 𝜈〉 = 𝜐𝑇𝜈 =  𝜐1𝜈1 + 𝜐2𝜈2 +⋯+ 𝜐𝑛𝜈𝑛 (2.2) 

〈𝑈, 𝑉〉 =  𝑡𝑟(𝑈𝑇𝑉) =  ∑ ∑ 𝑋𝑖𝑗, 𝑌𝑖𝑗
𝑛
𝑖=1

𝑚
𝑖=1       (2.3) 

Where the operator tr(A) denotes the sum of diagonal entries of the matrix A, that is called the 

trace of matrix A.    

Norm of vector 𝜈 (2.4) can be represented in n dimensional feature vector in Euclidian space (2.5).  

𝜈 = [𝜈1, 𝜈2, 𝜈3, … , 𝜈𝑛, ] 𝜈 ∈ 𝑅
𝑛 (2.4) 

Thus 

‖𝜈‖𝑝 = (∑ |𝜈𝑖|
𝑝𝑛

𝑖=1 )1 𝑝⁄  (2.5) 

Which is the p-norm or the 𝑙𝑝-norm(1 ≤ 𝑝 ≤ ∞) of vector𝜈. Furthermore, p can be represented by 

1 which is called 𝑙1-norm, which is the sum of absolute values of elements in vector𝜈. Moreover 

the 𝑙𝑃-norm of a vector can be restricted by 𝑝 = 2 that is Euclidian norm and represented as 𝑙2-

norm (2.6). Figure 2.1 represent the different types of 𝑙𝑃-norms in 2D.  

‖𝜈‖2 = √(𝜈1
2 + 𝜈2

2 +⋯+ 𝜈𝑛
2)  (2.6).  
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Figure 2.1. Geometric interpretation of different norms in 2-D (Zhang Z., Xu Y., Yang J., Li X., 

Zhang D., 2016). (a), (b), (c), (d) are the unit ball of 𝑙0 −norm, 𝑙1 −norm, 𝑙2 −norm, and 

𝑙0<𝑝<1 −norm in 2D space respectively.  

 

The sparsity of a vector 𝜈 is normally represented as ‖𝜈‖0. This notation is regard to the number 

of nonzero element of vector  𝜈 that is given by (2.7) (Bruckstein, A.M., Donoho D. L., and Elad 

M., 2009). 

‖𝜈‖0 = 𝑙𝑖𝑚
𝑝→0

‖𝜈‖𝑝
𝑝
= 𝑙𝑖𝑚

𝑝→0
∑ |𝜈𝑖|

2𝑛
𝑖=1  (2.7) 

As shown in (2.7) the notation intuitively stands for sparse representation problem. The relation 

between various from of 𝑙𝑝-norm can be found in figure 2.2 in which represents the shape of the 

function |𝛼|𝑝 with various value of p. Indeed, the sumation of all nonzero interies is accuired by 

count of the nonzero location entries of vector 𝜈. The property of the 𝑙𝑝-norms can be assessed in 

terms of smoothness and convexity. As shwon in figure 2.2 basically 𝑙𝑝-norm (0 < 𝑝 < 1)  function 

is noncovex, nonsmooth, and global nondifferentioable function. In contrast the 𝑙1-norm  is 

convex, nonsmooth, global nondifferentiable function, and 𝑙2-norm is convex, smooth, global 

differentiable function (Zhang Z., Xu Y., Yang J., Li X., Zhang D., 2016).   
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Figure 2.2. The behavior of |𝛼|𝑝 for 𝑝 = {0, … ,2}. As p tends to zero, |𝛼|𝑝 approches the indicator 

function, which is 0 for 𝛼 = 0, and 1 for 𝛼 ≠ 0. 

2.2. Linear dependency  

A concreate example of the linear dependency and dimensionality reduction can be given as 

follows, Consider �⃗�  and �⃗⃗� numerically given by (I) as 2D vectors, the goal is to find a way to 

reduce the number of vector. This idea comes from linear system of equation that takes the 

advantages of linear dependency concepts according to the basis vector in linear algebra.   

�⃗� = (
2
4
) , �⃗⃗� = (

4
8
) (𝐼) 

Based on the linear combination concept when a vector is in span of the other (basis vector) then 

we can factorize that vector by finding the scaler multiplication that sufficiently satisfy the equality 

concept.  

Hence, solving (I) is as follows: 

             𝜆�⃗� = �⃗⃗�                (3.3)𝜆 = 2 

Therefore 2 is a scaler multiplication of vector 𝜐 that can expand the𝜈  to 𝜐 . Indeed, we are able to 

get rid of redundant direction/dimension by factorizing vector 𝜐  and eventually address the 

problem of dimensionality.  This concept called linear dependency.  
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 2.3. Sparse Approximation 

Sparse approximation also called sparse representation (SR) is a mathematical concept for sparse 

solutions of a linear system of equation. In mathematics, a linear system of equation comprises a 

set of linear equations that have the same variables. Sparse approximation has gained much 

attention in image processing, signal processing and machine learning. Sparse representation is 

inspired by comperes sensing (CS) (Donoho D. L., 2006). CS theory suggests that if a signal is 

sparse or compressive the original signal can be recover be a few measurement, which are 

remarkably less than suggested method such as Shannon’s sampling theorem (Zhang Z., Xu Y., 

Yang J., Li X., Zhang D., 2016). Spare representation has many applications in image processing 

such as image denoising, deblurring, compression, super resolution, super-resolution, and image 

classification (Baraniuk, R.G., Candes, E., Elad, M., and Ma, Y., 2010). The assumption in SR is 

that, the unknown pixel or signal of interest is model as a sparse combination of few atoms 

represented in given dictionary and the approximation is control by a regularization term, which 

is the energy (norm) of the function. Sparsity is a very powerful prior for identification of the real 

signal out of the indirect measurement corrupted/noisy signal. When the goal is to find a close 

approximation of the real measurement of the given pixel then we are trying to recover the real 

signal approximately based on the given noisy signal and a regularization frame that keeps the 

approximation in a reasonable manner. This procedure also called sparse representation and when 

the main objective is classification one tries to find the closest feature vectors (groups) to the given 

feature vector (test pixel) which then by some meaning represent the corresponding class of given 

vector. The representation of the given pixel can be performed by several approaches such as 

linearly constrained optimizations, and proximity optimization problem. Generally, transforming 

an image within the linear concept is bas on a generative sparsity model introduced by (Olshausen, 

B.A., Field, D.J., 1997). It is bas on learning a dictionary D using a set of training feature dataset. 

The learning dictionary can be employed for sparse representing of the given signal/pixel. This 

type of sparsity typically mentioned in the literature as sparse representation (Razaviyayn, M., 

Tseng, H-W., Luo Z-Q., 2014). Using sparse representation an image 𝑥 can be modeled as a linear 

superposition of a set of vectors {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑚} called atoms in dictionary D, given by: 

𝑥 = 𝐷𝛼, (2.1) 

Where the atoms in dictionary 𝐷 are corresponding to the training set constructed by a prior-

knowledge that can be explained as supervise learning, and 𝛼 ∈ 𝑅𝑚 is the coefficient vector that 

scales the atoms (columns in the dictionary) to the corresponding direction as close as given test 

feature vector. The construction of this dictionary is an active field of research that scientist and 

engineering dealing with. Designing of the dictionary has effect in both accuracy and 

computational time complexity. Such that choosing the dictionary that sparsifies the signals can 

be done via two approach (i) dictionary learning approach that is based on some mathematical 

model and (ii) building a sparsifing dictionary which is based on the mathematical structure of the 

data (Rubinstein, R., Bruckstein, AM., Elad, M., 2010). Sparse representation establishes a 

meticulous mathematical framework to study high dimensional data and ways to decode the 
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structure of the data in a sufficient manner (Baraniuk, R.G., Candes, E., Elad, M., and Ma, Y., 

2010). The simple representation and good scalability of the sparse representation is one of the 

best advantage of this algorithm that can be reliably implemented on distributed and parallel 

computing platform.  The sparsity algorithm based on the presented linear system of equations 

(1.1) can be explained in this way that 𝐷 ∈ 𝑅𝑛×𝑚  where 𝑛 is the number of equation (feature 

dimension) and 𝑚 is the number of unknown (sample dataset) is undetermined since the number 

of unknowns is less than the number of equations (𝑛 < 𝑚). Therefore, due to the underdetermine 

nature of D the linear system admits infinitely many solutions 𝛼 in which we seek for the one with 

fewest nonzero (2.2) elements that satisfy 𝑥 = 𝐷𝛼 condition. 

 

                  𝑚𝑖𝑛
𝛼
‖𝛼‖0Subject to 𝑥 = 𝐷𝛼           (2.2) 

 

Where 𝑚𝑖𝑛
𝛼
‖𝛼‖0 = {𝑖: 𝛼𝑖 ≠ 0, 𝑖 = 1,2,… ,𝑚} is the 𝑙0 is pseudo-norm which cants the number of 

non-zero entry of coefficient vector𝛼. This property is well known ad NP-Hard, which is a 

exhaustive search for finding the minimum of the given function. Ultimately, sparse 

approximation/representation implies that only a few elements with non-zero entry are able to 

approximate the solution such that (2.3) 

𝛼𝑘 ≠ 𝛼𝑖 ≪ 𝑛 < 𝑚. (2.3) 

This motivation allows us to decode the given x by a combination of a few atoms in dictionary that 

span the space to find the given vector. Since this problem is NP-Hard (Amaldi, E., and Kann, V., 

1998), the solution can be found in an approximation manner using 𝑙1 (2.4), such that using a 

convex relaxation of the problem, obtained by employing 𝑙1-norm instead of 𝑙0 where ‖𝛼‖1 simply 

sums the absolute values of  nonzero entries of 𝛼.   

𝑚𝑖𝑛
𝛼
‖𝛼‖1Subject to, 𝑥 ≈ 𝐷𝛼 (2.4) 

There have been many algorithms to solve the problem in 2.4. Indeed, one needs to clarify, which 

algorithm is the proper method for the posed problem. The main component of the sparsity-based 

models is the dictionary. The dictionary is the collection of training set which acquired by a given 

dataset. Dictionary can be constructed in various ways. There are tons of literature about dictionary 

learning or constriction of a dictionary in prior to the objective function (Hao S., Wang, W., 
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Bruzzone, L., 2017; Liu W.,Wen, Y., Li, H., Zhu, B., 2014). Furthermore, the optimization 

problem is an important aspect that should be considered. Various optimization algorithms 

developed for solving the problem of sparse approximation. Sparse representation theory can be 

categorized from different point of views. Since different method, have their particular motivations 

there have been different prospective for categorization. For instance, in terms of atoms the 

available sparsity based models can be divided in two groups (i) dictionary construction base 

model, (ii) dictionary learning based method. Based on the literature (H. Cheng., Z. Liu., L. Yang., 

and X. Chen, 2013) sparse representation algorithms considered in three classes, (i) convex 

relaxation, greedy algorithms, and combinational methods. In addition, sparse representation in 

terms of optimization are consider in four optimization problems, (i) the smooth convex problem, 

(i) non-smooth convex problem (ii) smooth non-convex problem, and (ii) non-smooth non-convex 

problem (J. A. Tropp, A. C. Gilbert, and M. J. Strauss, 2006; Tropp, 2006). In addition, a review 

paper by (Zhang Z., Xu Y., Yang J., Li X., Zhang D., 2016) categorized the available sparsity 

based algorithms with respect to the analytical solution and optimization viewpoints into four 

groups. (i) The greedy strategy approximation, (ii) constrained optimization strategy, (iii) 

proximity algorithm based optimization strategy, and homotopy algorithm based sparse 

representation. One of the famous algorithm for solving the problem in 2.4 is known as the Basis 

Pursuit (BP) algorithm (2.5) (Gill, P.R., Wang A., Molnar, A., 2010)  

𝑚𝑖𝑛
𝑥

1

2
‖𝑥 − 𝐷𝛼‖1 + 𝜆‖𝑥‖1, (2.5) 

This is an instance of convex optimization, which is the least squire solution with a penalty term. 

𝜆, denotes the parameter that controls the trade-off between sparsity and reconstruction fidelity 

also called regularization parameter and the rest are as before. The problem of basis pursuit can be 

handle using linear programming solver or alternatively using the approximation method such as 

matching pursuit (MP). MP is a greedy technique that finds none zeros locations of the coefficients 

one at the time. The sparse representation problem can be solved perfectly under the mild 

conditions via BP and MP that guaranty the unique solution (Donoho D. , 2006).  Nevertheless, in 

the noisy case where x associated with some noise the solution is approximated via (2.5). Indeed, 

the best projection of multi-dimensional data into the span of a dictionary, which has special 

properties, can be approximated by BP Denoting, and similarly via matching pursuit. Constrained 

optimization strategy motivated from the idea of finding a suitable way to transfer a non-

differentiable optimization problem to a differentiable optimization problem by replacing 𝑙1-norm 

penalty term by an equal constraint condition in a minimization problem. Indeed, by constrained 

optimization problem we make the minimization problem feasible by solve the problem of being 

convex but non-smooth function. The proximal algorithms can be efficiently represented as a 

powerful algorithm for solving constrained, non-smooth, large scale, or distributed version of 

optimization problem (Parikh, N., and Boyd S. , 2013). The main objective of proximal algorithm 

based optimization is to separate the objective function into two-piece. Meaning that the 

optimization function can be separated by removing the regularization term and solve the problem 

like convex function, such Iterative Shrinkage thresholding algorithm.    
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2.4. Geometric View of Norms and Sparsity 

This section gives a summary on sparse representation and based sparsity based model into 

different categories in terms of norm.  

As discussed in 2.1 an over-complete dictionary has infinitely many solutions in which the sparse 

representation seeks for the k-sparse solution (non-zero elements) (2.2). Let assume 𝐷 =

[𝑑1, 𝑑2, … , 𝑑𝑛] ∈ ℝ
𝑛 × 𝑚 where 𝑛 and 𝑚 denote the number of equations (feature dimension) and 

the number of unknown (sample) respectively where (𝑛 < 𝑚). Matrix 𝐷 is the basis dictionary 

that constructed by the measurement data called over-complete dictionary. Each column of 𝐷 is a 

sample that is called atom and the test feature dataset can be given by 𝑥 ∈ ℝ𝑛. Let us generally 

assume we want to approximate the give test sample using all of the unknowns. Thus we can 

represent it as (2.6),  

𝑥 = 𝑑1𝛼1 + 𝑑2𝛼2 +⋯+ 𝑑𝑚𝛼𝑚 (2.6) 

Can be written as                                        𝑥 = 𝐷𝛼 (2.6) 

In which 𝛼𝑖ℝ
𝑚 represents the coefficients associated with their sample. The given problem is an 

ill-posed problem if there is not any prior knowledge or constrained to the solution of 𝛼. Indeed, 

there is not exist a unique solution to the (2.6) that can present z. Thus, a regularization parameter 

needs to control the parameter 𝛼 to be restricted by a bindery which is the concept of ℓ𝑝 –norm 

which we discussed its principle at the beginning of this chapter. Assume a 2D vector for 𝑦 =

𝐷𝛼 where 𝑦 ∈ ℝ2 then figure 2.3 gives an intuition of ℓ1 – norm and ℓ2 – norm in which ℓ1 

promote the solution whiten the intersection in horizontal axes and, thus the solution for two entries 

in the other axes will be zero. In contrast with ℓ1, ℓ2-norm is nor promoting sparse solution, since 

the equation 𝑦 = 𝐷𝛼 intersects in two points within the ℓ2-norm (circle) shape. Therefore, two 

entries are non-zero (figure).  
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Figure 2.3. Depict the sparsity level in different 𝑙𝑝-nom. (a) Level sets ‖𝛼‖𝑞
𝑞
= 1 for several 

values of𝑞. (b) Optimization of (𝑃𝑞)as inflation of the original-centered 𝑙𝑝-balls until they meet 

the set of feasible points as 𝐷𝛼 = 𝑥 (Rish, I., Grabarnik, G., 2014). 

Regarding the difficulty of solving the under-determined system of equations, one can relax the 

equation (2.6) via imposing a penalty term (one choose of p for 𝑙𝑝–norm). Depending on the choice 

of p we can sparsify the solution of the coefficient𝛼. Furthermore, the real data are assuming to be 

associated with noise that affects the approximation. Therefore, the original model modified to the  

𝑥 = 𝐷𝛼 + ℇ (2.7) 

Where ℇ ∈ 𝑅𝑛 refer to the presentation noise in each dimension. Ultimately, the problem can be 

approximately obtained by minimizing the least squire solution (2.8). 

𝛼 =arg min ‖𝛼‖0  s.t   ‖𝑦 − 𝐷𝛼‖2
2 ≤ 𝜀 (2.8) 

This minimization problem (2.8) can be solved via various approaches. Indeed the question of 

using which optimization strategy guaranties the convergence to local or global minimum arises. 

Depending on the application, dataset and the posed problem the choice of optimization problem 

must be selected. Such optimization problems to solve the minimization problem for (2.8) can be 

mentioned as Lagrange multiplier, linear programming, quadratic programming, and convex 

optimization. The equation (2.9) is the Lagrange multiplier that introduce as a constrained 

optimization along with for 𝑙0-norm to solve (2.8). 

𝐿(𝛼, 𝜆) =arg min ‖𝑥 − 𝐷𝛼‖2
2 + 𝜆‖𝑥‖0, (2.9) 

Since this problem with 𝑙0-norm is NP-hard, we used 𝑙1-norm. The origin of the 𝑙1-norm is Lasso 

problem (Tibshirani, 1996; R., 2011). 𝑙1-norm has been used in many application such machine 

learning, computer vision (Patel V. M., and Chellappa, R., 2014) etc. Therefor the problem in (2.9) 

can be approximated via 𝑙1-norm (2.10).  

𝐿(𝛼, 𝜆) =arg min ‖𝑥 − 𝐷𝛼‖2
2 + 𝜆‖𝑥‖1, (2.10) 

Moreover, the problem in 2.9 can also be slaved by 𝑙2-norm (2.11). 

𝐿(𝛼, 𝜆) =arg min ‖𝑥 − 𝐷𝛼‖2
2 + 𝜆‖𝑥‖2, (2.11) 

The problem in (2.10) is a convex but no differentiable. That can be solved by proximity 

optimization problem. In addition, this problem can be convert to a constrained strategy using by 

indicating a stepwise direction for the derivation. It should be mentioned that the problem in (2.11) 

is not prone to give a sparse solution.  
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2.5. Optimization problem. 

In this section, some of the optimization function will be defined. Furthermore, two main 

optimization functions that used in this thesis will be explained.  Further we discussed the under 

determined and over determined system of linear equations. 

Optimization functions aims to minimize or maximize the objective function. Let us assume a cost 

function such as least squire solution (2.12) for underdetermine and/or overdetermined system of 

equations. Given a problem of system of equations (2.6),  

𝑥 = 𝐷𝛼 (2.6) 

Then the cost function will be the output value in least squire solution called residual given by,  

𝐽(𝛼) = 𝑟(𝛼) = ‖𝑥 − 𝐷𝛼‖2
2           (2.12). 

Thus, the optimization function also called objective function is given by two terms called, the 

cost function and regularization parameter, which is a weighted sum of least squire solution (2.9). 

The goal in optimization function is to minimize the objective function respect to the coefficient 

vector 𝛼 and the constrained𝜆.  

𝛼 = 𝐿(𝛼, 𝜆) =arg min ‖𝑥 − 𝐷𝛼‖2
2 + 𝜆‖𝑥‖0, (2.9) 

This problem can be solve based on its property in many ways. Indeed, choosing a specific number 

of  𝑃 for 𝑙𝑝-norm requires a specific algorithm to minimize the objective function (2.9). Since we 

would like to have the sparest solution, 𝑙1-nom provides sparse solutions rather than 𝑙2-norm 

(Schmidt, 2005). Although, the choice of 𝑙1-norm is a reasonable choice but finding the best 

minimization strategy for such problem (2.10) is challenging. Indeed, due to the property of 𝑙1-

norm, the function become a non-differentiable that needs efficient optimization strategies. 

Therefore, the problem can be solve via different approaches, such that, proximity optimization 

strategy, and constrained optimization strategy can be mentioned (Zhang Z., Xu Y., Yang J., Li 

X., Zhang D., 2016). In a more general case of least squire solution (cost function), the problem is 

convex. Hence, normal equation is the close form solution. First, let us consider two cases of linear 

system (underdetermined and overdetermined), and then look behind the minimization of the 

(2.12) for both system, and eventually solve the problem of optimization in (2.10).  

2.5.1. Overdetermined system  

Consider the linear system 𝑥 = 𝐷𝛼where there is no solution to this system in the case where D 

has more rows (equations) than columns (unknowns) where column are linearly independent. 

Therefore, this system called overdetermined system. One may seek for the solution by finding the 

coefficient vector 𝛼 that minimizes the least squire solution. In other words, the solutions that 

minimize the energy of the error (2.12), which also called cost function.  

𝐽(𝛼) = 𝑚𝑖𝑛
𝛼
‖𝑥 − 𝐷𝛼‖2

2, (2.12) 

Expanding 𝐽(𝛼) gives (2.13),  
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𝐽(𝛼) = (𝑥 − 𝐷𝛼)𝑇(𝑥 − 𝐷𝛼) 

𝑥𝑇𝑥 − 𝑥𝑇𝐷𝛼 − 𝐷𝑇𝛼𝑇𝑥 + 𝐷𝑇𝛼𝑇𝐷𝛼 

Since 𝐷𝑇𝛼𝑇𝑥 = 𝑥𝑇𝐷𝛼 

Then 𝑥𝑇𝑥 − 𝑥𝑇𝐷𝛼 − 𝑥𝑇𝐷𝛼 + 𝐷𝑇𝛼𝑇𝐷𝛼 

                       𝑥𝑇𝑥 − 2𝑥𝑇𝐷𝛼 + 𝐷𝑇𝛼𝑇𝐷𝛼                     (2.13) 

Eventually by taking the derivative of (2.13) we will get (2.14) 

𝜕

𝜕𝛼
𝐽(𝛼) = −2𝐷𝑇𝑥 + 2𝐷𝑇𝐷𝛼 = 0 

𝐷𝑇𝐷𝛼 = 𝐷𝑇𝑥 (2.14) 

Now assume the D is invertible then the solution of (2.12) using norm equation can be analytically 

given by (2.15)  

𝛼 = (𝐷𝐷𝑇)−1𝐷𝑇𝑥 (2.15) 

 

2.5.2. Underdetermined System 

Consider the linear system 𝑥 = 𝐷𝛼 that the matrix D has less rows (equations) then columns 

(unknowns) in which, the rows are linearly independent, then this system has infinitely many 

solutions. This system called underdetermined system. In this case, the common procedure is to 

find a solution 𝑥 with minimum norm. Which is solving for an optimization problem given by  

𝑚𝑖𝑛
𝛼
‖𝛼‖2

2   Subject to,    𝑥 = 𝐷𝛼 (2.17). 

In this case, the minimization preformed via Lagrange multipliers (2.18) 

𝐿(𝛼, 𝐿) = ‖𝑥‖2
2 + 𝐿𝑇(𝑥 − 𝐷𝛼)(2.18) 

Therefore, the derivation of Lagrange given by (2.19 and 2.20). 

𝜕

𝜕𝛼
𝐿(𝛼) = 2𝛼 − 𝐷𝑇𝐿    (2.19) 

𝜕

𝜕𝐿
𝐿(𝐿) = 𝑥 − 𝐷𝛼(2.20) 

Set the derivations to zero we get (2.21 and 2.22). 

𝛼 =
1

2
𝐷𝑇𝐿(2.21). 

𝑥 = 𝐷𝛼(2.22). 

Simply plugging 𝛼(2.21), into (2.22) we get, 
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𝑥 =
1

2
𝐷𝐷𝑇𝐿(2.23). 

Now let assume 𝐷𝐷𝑇 is invertible, then the solution of Lagrange multiplier is given by,  

𝐿 = 2(𝐷𝐷𝑇)−1𝑦        (2.24) 

Eventually plugging (2.24) give the solution of (2.24) in (2.21) and then we get, 

𝛼 = 𝐷𝑇(𝐷𝐷𝑇)−1𝑦         (2.25) 

Now, it is possible to verify that the solution 𝛼 can satisfy the equation  𝑥 = 𝐷𝛼 by plugging in,  

𝐷𝛼 = 𝐷[𝐷𝑇(𝐷𝐷𝑇)−1𝑦] = 𝐷𝐷𝑇(𝐷𝐷𝑇)−1𝑦 = 𝑦 (2.26) 

Therefore, the approximation of solution for 𝑚𝑖𝑛
𝛼
‖𝛼‖2

2 s.t 𝑥 = 𝐷𝛼 given by,  

𝛼 = 𝐷𝑇(𝐷𝐷𝑇)−1𝑦         (2.25). 

A common approach to approximate a linear system of equations is to minimize the objective 

function. So far the problem of minimization of objective function with the penalty term (2.9) 

depends on the choice of p-norm varies in terms of finding the best solution. Recall the problem 

in (2.10). 

𝐽(𝛼) = 𝑚𝑖𝑛
𝛼
‖𝑥 − 𝐷𝛼‖2

2 +𝜆‖𝛼‖1, (2.10)  

Where𝜆 > 0. This is a convex and non-differentiable function. To solve such optimization function 

which promise a sparse solution many algorithms have been proved. We discussed the two main 

approaches that recently become very famous for solving an ill-posed problem in linear system of 

equations, including proximity optimization strategy and constrained optimization strategy.  

2.5.3. Constrained optimization strategy 

Constrained optimization strategy commonly utilized in order to obtain the solution of 𝑙1-norm 

regularization parameter. These methods treat the non-differentiable unconstrained problem by 

reformulating it as a smooth differentiable constrained optimization problem with an efficient 

convergence to obtain the squire solution (Schmidt, M., Fung, G., Rosales, R., 2009).  There are 

different type of constrained optimization methods that solve the original unconstrained non-

smooth problem, such as steepest descent direction, Gradient Projection Sparse Representation 

(GPSR), normal Sub-gradient strategy, coordinate-wise sub gradient strategy. 

 

2.5.4. Steepest descent projection.  

This method uses the gradient descent algorithm in order to solve the non-differentiable problem. 

Gradient descent is one of the thousand methods to solve the system of linear equations, by 

reformulating it to a quadratic minimization (QM) problem. Such QM problems, linear list squires 
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(2.12) can be mention. Thus, the solution of (2.6) in a general form is (2.26). The least squire 

method gives us a nice property (being convex) to implement a minimization problem (2.12).    

𝑥 = 𝐷𝛼(2.6) 

𝑥 − 𝐷𝛼 = 0 (2.26) 

𝐽(𝛼) = 𝑚𝑖𝑛
𝛼
‖𝑥 − 𝐷𝛼‖2

2, (2.12) 

The minimization of (2.12) subject to 𝛼 can be done via iterations (2.27).  

𝛼𝑛+1 = 𝛼𝑛 − 𝛽𝛻𝐽(𝛼) (2.27) 

Where 𝛽 is the learning parameter, in other words it scales the step of directional derivative, and 𝛻𝐽(𝛼) is given 

by (2.28). 

𝛻𝐽(𝛼) = 𝐷𝑇(𝑥 − 𝐷𝛼)(2.28) 

Hence, the solution of least squire is given by iterating Gradient Projection Sparse Representation 

(GPSR) also called line search algorithm given by (2.29) as a negative gradient; 

  𝛼𝑛+1 = 𝛼𝑛 − 𝛽𝐷𝑇(𝑥 − 𝐷𝛼𝑛)        (2.29) 

Recall the objective function in (2.10) the 𝑙1-norm is a not differentiable. As mentioned, we can 

reformulate this problem to an unconstrained problem via talking a directional derivative in a 

stepwise manner over cost function, which is a convex function. Hence, we are able to solve the 

first part of the optimization function (2.29), but the second part will be done by shrink the 

coefficients to zero based on a given optimality condition (2.30) to get the sparest solution 

(Figueiredo, M.A.T., Nowak, R.D., Wright, S.J., 2007).  

𝐽(𝛼) = 𝑚𝑖𝑛
𝛼
‖𝑥 − 𝐷𝛼‖2

2 +𝜆‖𝛼‖1, (2.10)  

 

𝑔𝑖
(𝑛) = {

(𝛻𝐽(𝛼𝑛))
𝑖
, 𝑖𝑓 ∧ 𝛼𝑖

(𝑛) > 0 ∨ (𝛻𝐽(𝛼𝑛))
𝑖
< 0

0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (2.30) 

Therefore, choosing an initial guess for 𝛼 with the optimality condition in (2.30), we would 

extend the (2.29) with the condition (2.30) given by (2.31).  

𝛽0 = 𝑚𝑖𝑛
𝛽
𝐽(𝛼𝑛 − 𝛽𝑔(𝑛))    (2.31) 

In fact, we search by each iteration of  𝛼𝑛 along the negative gradient −𝛻𝐽(𝑧(𝑛)), projecting onto 

the non-negative orthant, and preforming a backtracking line search until a sufficient decrease is 

achieved in𝐽. Moreover, we shrink the coefficient to zero when its derivative is equal to the 

previous derivation conducted by an iteration operator. Furthermore, with the best starting point 

for 𝛼0we can guarantee a faster convergence with a proper step 𝛽 which minimizes the algorithm 

in (2.31). Thereof an explicate computation for step length 𝛽0 can be given by (2.32)  
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𝛽0 =
(𝑔(𝑛))

𝑇
𝑔(𝑛)

(𝑔(𝑛))𝑇𝐷𝑔(𝑛)
(2.32) 

To avoid the value of 𝛼0 to become very small or very large, we confine it within an interval 

of (0 < 𝛽𝑚𝑖𝑛 < 𝛽𝑚𝑎𝑥) and to optimize the choice of best value in the interval we can define the 

𝑚𝑖𝑑 (𝑎, 𝑏, 𝑐 ) operation to define the middle value of its tree scaler arguments (Figueiredo, M.A.T., 

Nowak, R.D., Wright, S.J., 2007). 

One might consider the other sub Gradient strategies, for optimization function at non-

differentiable points. In non-smooth optimization the local minimums achieved as a zero vector 

containing the elements of sub differential 𝜕𝑓(𝛼) CITATION Fle13 \l 1033  (Fletcher, 2013). The 

sub gradient of the absolute value function |𝛼𝑖|given by the 𝑠𝑖𝑔𝑛𝑢𝑚 function𝑠𝑔𝑛(𝛼𝑖). The 𝑠𝑖𝑔𝑛𝑢𝑚 

function takes on the sign of 𝛼𝑖 whenever 𝛼𝑖 is non-zero, and when 𝛼𝑖 is zero then the 𝑠𝑖𝑔𝑛𝑢𝑚 

function can take any value in range of [-1, 1]. Therefore the optimality condition transfer to the 

following (2.33): 

𝑔𝑖
(𝑛)

= {
(𝛻𝐽(𝛼𝑛))

𝑖
+ 𝜆𝑠𝑖𝑔𝑛(𝛼𝑖) = 0, |𝛼𝑖| > 0

|(𝛻𝐽(𝛼𝑛))
𝑖
| ≤ 𝜆. , 𝛼𝑖 = 0

      (2.31) 

The steepest descent projection for sparse solution achieved by a coordinate wise sub gradient 

method in which the optimality condition will be (2.32): 

𝑔𝑖
(𝑛) =

{
 
 

 
 

(𝛻𝐽(𝛼𝑛))
𝑖
+ 𝜆𝑠𝑖𝑔𝑛(𝛼𝑖), |𝛼𝑖| > 0

(𝛻𝐽(𝛼𝑛))
𝑖
+ 𝜆, 𝛼𝑖 = 0, (𝛻𝐽(𝛼

𝑛))
𝑖
← 𝜆

(𝛻𝐽(𝛼𝑛))
𝑖
− 𝜆, 𝛼𝑖 = 0, (𝛻𝐽(𝛼

𝑛))
𝑖
> 𝜆

0𝛼𝑖 = 0,−𝜆 ≤ (𝛻𝐽(𝛼𝑛))
𝑖
≤ 𝜆

(2.32)   

This optimality condition, yield a descent direction for a sub-optimal 𝛼 on the objective function,    

 

2.5.5. Proximity optimization strategy  

Proximity optimization strategy, aims to solve the problem of constrained convex optimization 

problems. The core idea in proximity algorithms motivated by employing proximal operator to 

solve the sub-problem in a iterative manner. This is more computationally efficient than the 

original problem. The proximity algorithm utilized in order to solve the non-smooth, constrained 

convex optimization problem (Parikh, N., and Boyd S. , 2013). In addition, the problem of sparse 

representation with 𝑙1-norm (2.10) is non-smooth convex optimization problem, which can 

efficiently tackled via employing proximal algorithm. Hence, the problem in (2.10) reformulated 

as (2.33).  

𝑚𝑖𝑛𝑃(𝛼) = {𝜆‖𝛼‖1 + ‖𝑥 − 𝐷𝛼‖2
2|𝛼 ∈ 𝑅𝑚}(2.32) 

Which is consider as the constrained sparse representation of problem (2.10).   
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2.5.6. Iterative soft shrinkage algorithm  

For solving the problem of non-convex ℓ1-norm sparse representation (2.32) a number of 

algorithm has been proposed, such as iteratively reweighted least squires (IRLS), iteratively 

thresholding method (ITM), and look up table (LUT) (Zuo, W., Meng D., Zhang, L., Feng, X., 

Zhang, D., 2014). To solve the problem of ℓ1-norm a soft thresholding operator (figure 2.4) 

given by (Donoho D. , 1995). 

 

Figure 2.4. Generally, when the |𝛼| is less or equal than the given threshold𝜆, the soft-thresholding 

operator uses the thresholding rule to assign 𝑡1(𝛼, 𝜆) to 0. In contrast when |𝛼|is bigger than given 

threshold then (|𝛼| − 𝜆) should be operated and along with sign function.  

This thrsholding method called Iterative soft shrinkage thresholding and can be used in many 

convex optimization strategy to solve the problem of 𝑙1-norm. Indeed, mapping inverse problems 

can be formulated as an optimization problem and solved by forward backward or Iterative 

Shrinkage/Thresholding in which non-smooth functions with sparsity constraints can be 

minimized effectively. Furthermore, the soft shrinkage operator cannot deal with the biased 

estimation of the large coefficients. Hence injecting a step (steepest descent) on the approximation 

allows to reduce the bias in practice (Kowalski, M., 2015).  

2.7. The Quest for Dictionary  

Dictionary is one of the most important component of the sparsity base model (2.2). Dictionary is 

a set of training sample that used to recover the given signal/image. Sparse dictionary base model 

is a vast field and the entire details about this concept is not in the scope of this thesis. A dictionary 

must be properly designed in order to present the latent structure in the data.     

𝑥 = 𝐷𝛼𝑠. 𝑡. ‖𝛼‖0 ≤ 𝑘(2.2)  

Where 𝐷 ∈ 𝑅𝑛×𝑚 is the dictionary, which is consider as the system of equations, 𝑛 represent the 

number of equations and 𝑚 denotes the number of unknowns in the system. Other words the rows 

are the data dimension and the columns are their corresponding observation that called atom (Elad, 

2013). The system can be presented as either a linear system or non-linear system. However, the 

dictionary can be constructed in prior to the algorithm like basis pursuit (2.6). Hence, the 

minimization applied only on the coefficient vector𝛼.   
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𝑚𝑖𝑛
𝛼

1

2
‖𝑥 − 𝐷𝛼‖1 + 𝜆‖𝛼‖1, (2.6) 

Furthermore, the dictionary can be learned along with the coefficient vector 𝛼 (2.24) (Mukherjee, 

S., Basu, R., Seelamantula, CS., 2016).  

𝑚𝑖𝑛
𝛼,𝐷

1

2
‖𝑥 − 𝐷𝛼‖1 + 𝜆‖𝛼‖1, (2.24) 

There is also the case where the coefficients are fixed and only the atoms in the dictionary get 

update in each iteration. The main concern after defining a sufficient optimization algorithm is to 

answer the question of, how can we wisely choose D that performs well for the representation of 

the given signal and/or image.  The following sections give a brief answer to this question. A 

various number of dictionary have been developed and proposed in response to the rising needs. 

These dictionaries emerge from two sources, (i) either mathematical model or (ii) realization of 

the data (Rubinstein, R., Bruckstein, A.M., Elad, M., 2010). Dictionaries formed by analytical 

formula refers to the earlier stage of transfer design such as Fats Fourier transformation, wavelets, 

wavelet packets, contourlets, and curvelets (Rubinstein, R., Bruckstein, A.M., Elad, M., 2010). 

However, the mentioned method is limited to lower dimensional signals and/or images. In the 

second approach, the fundamental goal of learn a dictionary is to preform best on the training set 

where the constructed dictionary represents the signal/image in informative presentation. 

Dictionary learning takes several routs. One can update the dictionary via minimizing the 

optimization function such that K-SVD can be mentioned. The other possibility is to construct a 

dictionary in prior to the optimization function such as Basis Pursuit (BP). That means the 

dictionary construct by some means, such as being orthonormal dictionary, which contains 

orthogonal column vectors. The goal of dictionary learning is to discover a set of base atoms 

(elements) that can describe the hidden pattern in the given data. In contrast, in dictionary learning, 

atoms in the dictionary are not require to be orthogonal. For dictionary learning algorithm, the 

dictionary can be an over-complete spanning-set, and has to be inferred form that input data. 

Forming a dictionary can be done via several algorithms. Such that, Recursive Least Square (RLS) 

which is a dictionary based algorithm, and continuously update the training atoms until 

convergence (Skretting, K., and Engan, K., 2010), Method of Optimized Directions (MOD) in this 

method, selection of atoms is done by frame design technique (Engan, K., Aase, S.O., Husoy, J.H., 

1999), and many other method such as k-SVD can be mentioned. K-SVD method is a sparse base 

dictionary-learning algorithm, which motivated by k-mean algorithm and iteratively apply sparse 

coding on the obtained dictionary until it fists the data (Anaraki, F.B., Hughes S.M., 2013). 

Methods such as MOD, and K-SVD are not suitable for high dimensional dataset and they are 

prone to be stuck in local minimum (Rubinstein, R., Bruckstein, A.M., Elad, M., 2010). In addition, 

sparse dictionary learning is not considering the redundancy of the atoms and thus it has a high 

computational complexity (Zhu, Z., Qi, G., Chai, Y., Li, P., 2017). Moreover, the dictionary can 

be defined (Zhu, Z., Qi, G., Chai, Y., Li, P., 2017) before utilizing in a sparsity based model. This 

called dictionary construction and/or predefined dictionary (Rubinstein, R., Peleg, T., Elad, M., 

2013; Vasanth Raj, P.T., and Hans W.J., 2015). Indeed, the dictionary can be mathematical 
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describe, having orthogonal columns that avoid redundancy in the dataset and reduce the number 

of samples to be presented in the dictionary. Hence the amount of computational time is 

significantly reducing. Such geometric dictionary has been proposed by (Zhu, Z., Qi, G., Chai, Y., 

Li, P., 2017) which is motivated by PCA that fits the high dimensional dataset very well.   
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Chapter 3 

3.1. Hyperspectral Imagery  

Earth observation via Remote Sensing imagery is gaining advancements in the era of hyperspectral 

imagery (HSI) figure 1. Image spectroscopy as a technique of acquiring information across 

electromagnetic spectrum allows us to capture images with contiguous hundreds spectral bands 

ranging from visible and solar infrared interval. “A hyperspectral image is captured as a three-

dimensional data cube (figure 2) comprising two-dimensional spatial information and one-

dimensional spectral information. The spectral signature of a pixel is a vector whose entries 

correspond to the spectral responses of an object in different bands” (Huang A, Zhang H , Pižurica 

A., 2017). Hyperspectral imagery data contains the more distinguishable information of the objects 

compare to multispectral imagery data. By the means that a hyperspectral image has higher spectral 

resolution than a multispectral image. With recent advent of very high-spectral resolution, 

hyperspectral imagery contributes to discover many material substances, which could not be 

discovered by multispectral imagery (Chang, 2013). Since HSI data are very sensitive to capture 

even small portion of electromagnetic range, numerous application arise including precision 

agriculture (Zhang, X., Sun, Y., Shang, K., Zhang, L., & Wang, S., 2016), environmental 

monitoring (Moroni, M., Lupo, E., Marra, E., & Cenedese, A., 2013) and urban planning (Weber, 

C., Briottet, Xavier, B., Aguejdad R., Aval, Josselin, A., 2018). Hyperspectral sensor provides 

hundreds spectral features which each feature called channel/band where each band covers a small 

portion of electromagnetic spectrum. Hyperspectral images cover a large area of surface via either 

space-borne or airborne platform.  

 

Figure 3.1. Illustrate the concept of a space-borne hyperspectral scene (Shaw, G.A. and Burke, 

H.K., 2003) capturing hundreds spectral information measured in each pixel as reflectance. The 

variation of spectrum over scene represent individual object. Spectral variation of three material 

shown in the left side of the figure.    

 



24 
 

 

Figure 3.2. Structure of the hyperspectral data cube. (a) A push-broom sensor on an airborne or 

space borne platform collects spectral information for a one-dimensional row of cross-track pixels, 

called a scan line. (b) Successive scan lines comprised of the spectra for each row of cross-track 

pixels are stacked to obtain a three-dimensional hyperspectral data cube. In this illustration, the 

spatial information of scene presented by x and y dimensions of the cube, and the amplitude spectra 

of the pixels are projected into the z dimension. (c) The assembled three-dimensional hyperspectral 

data cube can be treated as a stack of two-dimensional spatial images, each corresponding to a 

particular narrow waveband. A hyperspectral data cube typically consists of hundreds of such 

stacked images. (d) Alternately, the spectral samples can be plotted for each pixel or for each class 

of material in the hyperspectral image. Distinguishing features in the spectra provide the primary 

mechanism for detection and classification of materials in a scene (Shaw, G.A. and Burke, H.K., 

2003). 

3.2. Hyperspectral Image processing  

Retrieving information from hyperspectral data is a challenging task. Apart from hyperspectral 

image (HSI) preprocessing (e.g. atmospheric-correction, geo-correction), processing task is the 
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core of the feature analysis. Hyperspectral Image Processing (HSIP) due to the complexity and 

diversity and some number of limitations considered to be challenging. Hyperspectral images due 

to their capability of capturing narrow bands are prone to be a redundant set of spectral dimensions. 

Additionally, unlike conventional images with hyperspectral resolution, hyperspectral images are 

limited by relatively lower spatial resolution. Therefore, the problem of spectral unmixing (linear 

and nonlinear) arises which leads to the state of the art endmember extraction task (Dias, J.M.B., 

Plaza, A., Valls, G.C., Scheunders, P., Nasrabadi, N., Chanussot, J., 2013). Other important issues 

for processing hyperspectral data is their property regarding their higher dimensionality and 

temporal resolution. This demand of accelerating computational processing is to increasing the 

speed of interpretation of hyperspectral images in various applications. Considering one that wants 

to perform a time series analysis on crop agriculture via hyperspectral data (Eerens, H., Haesen, 

D., Rembold, F., Urbano F., Tote C., Bydekerke, L., 2014), then dealing with such big dataset 

needs efficient algorithms, which can minimize the computational time and maintain the accuracy. 

There are many type of processing approach based on the application and ultimate goal. Such 

image-processing task in hyperspectral image can be mentioned as, spectral unmixing, endmember 

extraction, target detection, change detection, edge detection and dimensionality reduction. In 

hyperspectral imagery, dimensionality reduction is generally following an approach of retrieving 

the original direction of information in which the remains spectral information are orthogonal 

bases vectors. Ultimately, in spectral dimensionality reduction the goal is to present the data in the 

lower and most relevant feature direction with retain the maximum variance in the spectral 

signature. This approach also leads to the elimination of the noise associated to the real signal via 

only separating noise from signal dimension space. For dimensionality reduction of hyperspectral 

images several algorithms being used such as Principle Component Analysis (PCA) (Li, Y., Wu, 

Zebin Wu., Wei J., Plaza, A., Li, J., Wei Z., 2015), Linear discriminate analysis (LDA) (Li, W., 

Prasad, S., Fowler, J.E., Bruce, L.M.,, 2011). A comprehensive description of hyperspectral 

images processing and analyzing is behind the scope of this thesis. The focus is on hyperspectral 

image classification via sparsity-based model. Some references regrading hyperspectral image 

processing and analysis in different topics including endmember extraction, unmixing and 

compression and son on, can be covered by (Chang, 2013; Valls, G-C., Tuia, D., Chova L-G., 

Jiménez, S., Malo J., 2012). In this thesis, the focus is on hyperspectral image classification but a 

few common and relevant tasks in hyperspectral image analysis will be briefly explain such as 

pixel unmixing/endmember extraction and dimensionality reduction.   

 

 

3.3. Spectral Unmixing and Endmember Extraction  

The fundamental goal in hyperspectral image processing in terms of spectral unmixing which lead 

to endmember extraction is to retrieve a group of pure spectrum of an individual object in the entire 

scene that called endmember. The basic approach for hyperspectral image processing is to match 

each individual spectral signature (pixel) to one of the spectral reference in spectral library. This 
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approach is only feasible when the entire pixels of the scene of interest have their pure 

representation in spectral library. Therefore, a prior measurement in the field is demanding for this 

basic approach. Hyperspectral images are limited by relatively lower spatial resolutions. Thus, 

most of the hyperspectral images are containing mix pixel. That means most of the individual 

pixels are more likely prone to be a mixture of different material. This is also may cause by the 

mixture of distinct material that are formed naturally. The resulting image of mixed-pixel spectrum 

may resemble multiple reference spectra. Endmember implies the original member/material of the 

pixel which represent the set of abundances at each pixel that indicates the percentage of each 

endmember that are presented in pixel (Bioucas-Dias, J-M., Plaza, A., Dobigeon, N, Parente, M., 

Du, Q., Gader, P., Chanussot, J., 2012).  

There are many techniques for endmember extraction. These techniques can be expressed in two 

assumptions. The first assumption is based on existence of pure pixel and the second one is 

regarded by the assumption of absence of pure pixels for the endmember extraction (Plaza, J., 

Hendrix E.M.T., García I., Martín, G., Plaza, A., 2012).  The first assumption lays on the existence 

of at least one pure pixel in hyperspectral dataset for each individual material on the scene. 

However, this is usually not a valid assumption due to spatial resolution, phenomenal mixing and 

other considerations (Plaza, J., Plaza, A., Perez, R., Martinez, P., 2009). Techniques among many 

others (Du, Q., Raksuntorn, N., Younan, N.H., King, R.L., 2008). Therefore, the focus is on the 

developing an algorithm for endmember identification that do not relies on the presence of pure 

pixel.  Many unmixing algorithms have been developed (Bioucas-Dias, J-M., Plaza, A., Dobigeon, 

N, Parente, M., Du, Q., Gader, P., Chanussot, J., 2012; Ma, W-K., Bioucas-Dias J.M., Chan, T-

H., Gillis N., Gader, P., Plaza, A-J., Ambikapathi, A., Chi C-H., 2014) using several approaches 

such as geometrical (Donoho, D-L., I-M-J Biometrika., 1994), statistical (Nascimento, José M. P., 

Bioucas-Dias, José M., 2012) and sparsity based model (Tang, W., Shi, Z., Wu, Y., Zhang C., 

2014). Spectral unmixing algorithms are mostly use the invers computation of the spectral 

signature to retrieve the endmember. Two common such models are linear and non-linear 

unmixing model. In linear model a concept of linear combination of the pixel are used but non-

linear models are more complex and use techniques such as kernel based models (Wang, W., Qian, 

Y., 2016) and machine Learning algorithms (Ahmed , A-M., Duran, O., Zweiri, Y., Smith, M., 

2017).  However, the liner-mixing model has been studied and presented be a well suited and 

standard technique.  It is assumes that each spectral vector can be approximately recovered by a 

linear combination of endmembers weighted by their corresponding fractional abundance which 

in the scene (Figure 3.3). Given a spectral vector 𝑥 ∈ 𝑅𝐵 where B is the number of bands then the 

model can be mathematically given as, 

                           𝑥 ≅ ∑ 𝛷𝑗
𝑑
𝑗=1 𝛽𝑗 + 𝜖   s.t  𝛽𝑗 ≥ 0 𝑑 = 1,2, … , 𝑑                          (3.1) 

∑ 𝛽𝑗
𝑑
𝑗=1 = 1. 
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Where 𝛷 ∈ 𝑅𝐵×𝑑 is a set of given endmember as columns in which𝛷𝑗 ∈ 𝑅
𝐵, 𝑗 = 1,2, … , 𝑑 as an 

endmember, 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑝]
𝑇
∈ 𝑅𝑑 and 𝜖 ∈ 𝑅𝐵 is the associated error which each band taken 

into the model. 

 

Figure 3.3. Demonstrates the linear mixing. The observed spectrum 𝑥𝑖is a combination of the 

endmembers 𝑒1, 𝑒2, 𝑒3,with the respective weights 𝑎1𝑡, 𝑎2𝑡 , 𝑎3𝑡called abundances.   

Spectral unmixing in practice calls for efficient sparse regression techniques (Iordache, M-D., 

Bioucas-Dias, J., Plaza, A., 2011). Under the process of spectral unmixing via linear mixture model 

several steps must be performed, namely, atmospheric correction that conduct transformation of 

radiance to reflectance, data reduction, unmixing and invers operation. Data reduction preforms 

dimensionality reduction on hyperspectral images that lead to a faster computation. This step 

discussed in section 3.2.2. During unmixing stages, the endmember along with their abundances 

at each pixel will be identified. Eventually the invers operation solved by an optimization problem 

given a spectral vector and endmember. The objective function aims to minimize the residual 

between given pixel and the combination of endmember and abundance (coefficient) vector.  

3.4. Dimensionality reduction for Hyperspectral Images (HSI).    

The high dimensionality of spectral features in a HSI may affect the classification result in terms 

of accuracy and computational time speed (Pal, M.; Foody, G., 2010; Tong, F., Tong, H., Jiang, 

J., Zhang, Y., 2017).  Hyperspectral images acquiring information in hundred contiguous spectral 

bands, and thus the data volume to process are considered to be huge. In addition, hyperspectral 

sensors due to their narrow bands observation are expected to have a relatively strong linear 

dependency across contiguous spectral bands that convey almost the same information. Indeed, 

such a large number of dataset associated manipulating feature vector in different higher dimension 

spaces. In sophisticated algorithms, working with such large dimension of feature spaces is more 

challenging. Time computation and significant storage influence the accuracy of the statistical 

estimation of a fixed number of samples. Accordingly, this phenomenon known as "Hughes 
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phenomenon" in hyperspectral image processing (Schweizer, S.M, Moura, J.M.F., 2001; Bellman, 

1956). Dimensionality reduction is use for various purposes in exploitation of hyperspectral 

images. Such as image compression, feature selection, denoising, classification. To address the 

Spectral dimensionality issue, two dimensionality reduction (DR) approaches are generally used, 

including DR based transformation (DRT), and DR based band selection (DRBS). For DRT 

approach, a general task is to use a component analysis (CA) algorithm that allows us to transfer 

the data into a lower dimension space that present the fundamental direction of the dataset that 

mainly based on some statistical assumption like maximum variance. As such CA algorithms, 

principle component analysis (PCA) (figure 1.4) is one of the wieldy and famous transformation 

method that is use in hyperspectral image processing (Rodarmel, C., Shan J., 2002). Singular value 

decomposition (SVD) as a PCA based algorithm, maximum noise fraction (MNF) (A. Green, M. 

Berman, P. Switzer and M. Craig., 1998) and hyperspectral signal identification by minimum error 

(HySime) (J. Bioucas-Dias and J. Nascimento., 2008) are the most well-known dimensionality 

reduction and denoising algorithm for hyperspectral datasets. The PCA based on eigenvalue 

decomposition (Rodarmel, C., Shan J., 2002) is aiming to find a lower dimensional space by 

presenting the most relevant eigenvectors. Indeed, PCA computes the eigenvalues and their 

corresponding eigenvectors, and on the basses of magnitude of eigenvalue select a set of PCs that 

are orthogonal bases and retain the most variation in the dataset. There are many methods for 

spectral dimensionality reduction. Such that, higher order statistics-based CA transformation like 

Independent Component Analysis (ICA) and PCA can be mentioned. Nevertheless, the problem 

of using ICA is that there is no assumption of significance of selected component while in PCA 

the corresponding principle components have the eigenvalues and in SVD, singular values that 

represent the significance of selected number of PCs (Chang, 2013).  Generally, the purpose of 

DRT is to compact the data by reducing the dependency in the spectral feature dimension and 

present it in a lower dimension of spectral feature that provides the fundamental direction of the 

feature spaces. The DRBS aims to preserve the original dimension and use the advantage of the 

information gain (IG) and the spectral curve of the hyperspectral dataset (Xie ID Fuding., F,Li., 

Lei, C., Ke, L., 2018), to select the most relevant bands for a particular object and left the other 

bands behind.  
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Figure 3.4. Illustrates orthogonal projection using Principle Component Analysis concept. 

Example of the two-dimensional data(𝑥1, 𝑥2, ). The original data are on the left that presented in 

their original coordinate, i.e. 𝑥1and𝑥2, the variance of each variable is graphically represented and 

the direction of the maximum variance, i.e. the principle component𝑃𝐶1, is shown. On the right 

hand side the original data are projected (after shifting the mean center to the origin) on the first 

(blue stars) and second (green stars) principle components.  

The spectral domination reduction of hyperspectral image (e.g. figure 1.5) can be described as 

follows: 

 
Figure 3.5. Indian Pines dataset, which has the size of 145 × 145 × 220 (AVIRIS) 

In order to compute the principle component such hyperspectral dataset can be represent as a 

matrix A instead of multiple arrays that eventually the matrix 𝐴 ∈ 𝑅𝑑×𝐵 where d and B denote the 

number of pixels in the scene and spectral bands respectively. The fundamental goal of DRT in 

hyperspectral images is to de-correlate the neighboring contiguous bands by projecting them to 
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uncorrelated co-ordinate system in a lower dimensional 𝑘 space which can be denoted as 

transforming data from 𝐴 ∈ 𝑅𝑑×𝐵, to 𝐴𝑟𝑒𝑑𝑢𝑐𝑒 ∈ 𝑅
𝑑×𝑘. It has been shown by (Singh, A. and A. 

Harison, 1985) that in remote sensing, it may be more effective to work with data co-variances 

rather than data variances. That is implies to standardized principal components analysis (SPCA). 

Assume 𝑆 = {𝑑𝑖}𝑖=1
𝑑  is a set of B dimensional pixel (feature) vectors and 𝜇 is the mean value of i-

th B dimensional feature vectors in the sample pool S given by𝜇 = (
1

𝑑
)∑ 𝑑𝑖

𝑑
𝑖=1 . Let transpose the 

sample data matrix 𝐴 to be𝐴𝑇 ∈ 𝑅𝐵×𝑑, and call it matrix𝑋 = [𝑑1𝑑2…𝑑𝑑]. Then the sample 

covariance matrix of the S is obtained by, 

 

𝐶 =
1

𝑑
[𝑋𝑋𝑇] =

1

𝑑
[∑ (𝑑𝑖 − 𝜇)(𝑑𝑖 − 𝜇)

𝑇𝐵
𝑖=1 ]. 

 

The covariance matrix is represented as follows, 

 
The output of a covariance matrix is a squire matrix of spectral bands where 𝐶 ∈ 𝑅𝐵×𝐵 in which B 

is as before. The covariance matrix is a positive semi definite 𝐶 = 𝐶𝑇that the diagonal entries 

contain variance of each spectral band𝐵𝑖, 𝑖 = 1,2,… , 𝐵 and the off diagonal entries represent the 

per-wise covariance between each two variables as shown in matrix above.  

 

Covariance matrix used in order to fine the PCs space by computing eigenvalues and their 

corresponding eigenvectors given by, 

𝑉𝛴 = 𝜆𝑉 

Where 𝑉and 𝜆 denote the eigenvector and eigenvalue of covariance matrix respectively. The 

eigenvalues are the scaler values and eigenvector are the principle component vectors with non-

zero entry. The eigenvectors represent the direction of PCA space and the eigenvalue are the scalar 

multiplication of eigenvector that represent the robustness of the eigenvector (Hyvärinen, 1970; 

Strang, G., & Aarikka, K. , 1986).  
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3.5. Hyperspectral Imagery classification 

Remote Sensing data are becoming more and more feasible in facilitating research on studying 

any object even system on the Earth. Such that researches that become very practical nowadays in 

the real world problems are including, urban planning, land management, urban management, 

environmental modeling, agricultural crop management and monitoring, landscape planning, 

environmental conservation, biodiversity monitoring, ecology, Energy management. Nowadays 

much governmental and non-profit organization produce a substantial amount of remote sensing 

data with high quality and accuracy. Producing such vast amount of data in terms of diversity, 

velocity, and volume needs efficient algorithms to treat them and extract actionable insight from 

this large and complex collection of digital data. Hence, these data are prone to be considered as 

big data. Processing and analyzing remote sensing data are varies based on the ultimate purpose. 

Some fundamental tasks need to be done beforehand in analyzing this type of data. This 

fundamental task comprises two main approach called preprocessing and processing. 

Preprocessing of a remote sensing data including, Geometric Correction, Atmospheric Calibration, 

missing data reconstruction and so on. Nevertheless, in the processing task the focus is on 

preforming fundamental tasks for analyzing phenomena. Such this tasks, image enhancement, 

pixel-unmixing, image denoting, image classification can be mentioned.  Image classification is 

one of the most important task in remote sensing data processing. Image classification has many 

applications in time series analysis, anomaly detection, change detection, target detection, habitat 

changes. Due to the mentioned complexity of remote sensing data, advanced algorithms have been 

prosed for classification tasks. Generally, several factors make the analysis of hyperspectral 

images complex and sophisticated. Indirect measurements like remote sensing always 

contaminated with noise and mixed pixel in which analyzing such data is a hard task calls the 

advance methods and algorithms. Many learning algorithms have been proposed for hyperspectral 

image classification, such as supervised and unsupervised classification in which supervised 

learning algorithms use a set of observation to train the machine and find the best separating 

hyperplane (logistic regression, support vector machine) and unsupervised learning algorithms use 

a clustering algorithm and based on the proposed cluster classify the new given pixel. Preforming 

a classification task on remote sensing imagery data can be done in several approaches such as 

pixel-wise. Subpixel wise, and object- based image classification (Li, M., Zang, S., Zhang, B., Li, 

S., Wu, C., 2014).  

3.6. Pixel-Wise Image Classification. 

Pixel-wise classification method assume each pixel is pure and labeled as an endmember of land-

cover/land-use (Xu M., Watanachaturaporn P., Varshney P., Arora M., 2005). With this method, 

remote sensing images are considering as a collection of pixels with spectral information that are 

used as input data set for pixel-bas classification. In general, pixel-wise classification algorithms 

can be divided into two groups: unsupervised classification and supervised classification. In 

supervised classification, pixels are represented in different groups according to the given labels 

(ground truth). The supervised classification algorithm, Support Vector machine (SVM), Logistic 

regression, Maximum Likelihood Classifier (MLC) (Shalaby A., Tateishi, R., 2007), Sparse 



32 
 

Representation can be mentioned. In unsupervised classification strategy the pixels are groups in 

different cluster based on the intensity value (Puletti N., Perria R., Storchi P., 2014). Moreover, 

there are several strategies that spatial information can be included. Such unsupervised 

classification algorithms, K-means, Iterative Self-Organizing Data Analysis Technique 

(ISODATA) (El_Rahman, 2016) can be mentioned. Among, these all algorithm machine learning 

techniques have shown better performance and result. Machine learning algorithms are developed 

to enhance the knowledge learning process. Artificial neural networks, Decision threes (Gislason, 

P.O., Benediktsson J.A., 2006), SVM (Mountrakis, G., Im, J., 2011) can be mentioned. Recently, 

advanced computer vision and signal processing algorithms have been applied on remote sensing 

data classification (Huang A, Zhang H , Pižurica A., 2017). Such this algorithm sparse coding has 

gained a great attention. But more generally, all these algorithms perform the classification task 

with the two main approaches that demonstrated in figure 3.6.  

 

Figure 3.6. Illustrates the two different approaches for image classification. 
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Chapter 4 

4.1. Efficient sparse signal recovery for Hyperspectral Imagery data classification 

In this chapter, we develop classification principles for high dimensional spectral images called 

hyperspectral imagery in remote sensing domain. The general idea is to model a high spectral 

feature dimension pixel as a column vector, which is represented by some dictionary. The 

assumption is that, for different groups of pixels we have by a-prior knowledge different 

dictionaries are available. The classification process results in sparse recovery algorithms, where 

the recovered sparse vector contains basic information for the membership to the one of the classes.  

4.2. Classification Problem, a Prior-knowledge 

Assume we want to classify a 𝐵-dimensional pixel 𝑥 ∈ 𝑅𝐵 into one of C preassigned classes, for 

which we have for the 1st class 𝑑1 test samples that are stored as 𝑑1 (column vector) in B dimension 

and represented in matrix 𝐷1 ∈ 𝑅
𝑑1×𝐵, for the 2nd class, we have 𝑑2 test samples that are stored in𝐷2 

and so on. Each group of pixels (prior-knowledge) individually presented in a matrix called sub-

dictionary. Eventually all of these matrices concatenated in a unique matrix called dictionary that 

holds the properties of all of the given classes which is given by,  

               𝐷 = [𝐷1, 𝐷2, 𝐷3, … , 𝐷𝐶](4.1), 

where  𝐷1 ∈ 𝑅
𝐵×𝑑1 denotes the sub dictionary 1, and so on. 

                                         𝐷 =

(

 
 

𝑥1,𝑑1 𝑥1,𝑑2 . . 𝑥1,𝑑𝑐
. . . . .
. . . . .
. . . . .

𝑥𝐵,𝑑1 𝑥𝐵,𝑑2 . . 𝑥𝐵,𝑑𝐶)

 
 
(4.1) 

 

𝐷 ∈ 𝑅𝐵×𝑑 where 𝑑 = 𝑑1 + 𝑑2 + 𝑑3 +⋯+ 𝑑𝐶 which denotes the atoms (column vector) in the 

dictionary.  

4.3. Data Model and Classification Principle  

The classification idea goes as follows: Consider a given test pixel 𝑥 ∈ 𝑅𝐵 to be classified. Hence, 

if 𝑥 is a member of k-th class stored in the dictionary𝐷, then it should be close to one of the atoms 

in𝐷𝑘. In another words, a pixel 𝑥 ∈ 𝑅𝐵can be modeled as a linear combination of a set of vectors 

𝑑 = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛} called atoms in dictionary. That mathematically is given by, 

𝑥 ≈ 𝐷𝑘𝛼𝑘(4.2), 

where 𝛼𝑘 ∈ 𝑅
𝑑𝑘, and ‖𝛼‖

𝑅𝑑𝑘
2  is large enough. 

Once the group C are geometrically well separated, it should not be possible to reasonably 

represent 𝑥by means of training samples from𝐷𝑗from all 𝑗 = 1,2,… 𝐶but𝑗 ≠ 𝑘, i.e. there exist no 

coefficient vector 𝛼𝑗 ∈ 𝑅
𝑑𝑗 with 𝑗 ≠ 𝑘such that  
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𝑥 ≈ 𝐷𝑗𝛼𝑗(4.3) 

Or even  

𝑥 ≈ 𝐷1𝛼1+. . . +𝐷𝑘−1𝛼𝑘−1 + 𝐷𝑘+1𝛼𝑘+1+. . . +𝐷𝐶𝛼𝐶 . (4.4)   

 

In other words, if we consider the complete linear representation that involves all test samples,  

𝑥 ≈ 𝐷1𝛼1 + 𝐷2𝛼2+. . . +𝐷𝐶𝛼𝐶(4.5) 

The task is to identify that dictionary for which the norm (or energy) ‖𝛼‖
𝑅𝑑𝑘
2 is significantly larger 

than the same quantity for the other class, i.e. 𝑥that belongs to the k-th class if,  

‖𝛼𝑘‖𝑅𝑑𝑘
2 ≫ ‖𝛼𝑗‖𝑅𝑑𝑗

2
 for all𝑗 ≠ 𝑘. 

Furthermore, the dictionary should clearly describe the individual classes. That means the 

individual test samples𝑑𝑗 in each 𝐷𝑗 from in almost all cases must be geometrically redundant set 

of vectors. This issue discussed and a construction approach proposed in section 4.4.1.     

4.4. Sparse Recovery Principle as a Classification Problem 

Sparse representation draws much attention in recent years and many application of sparse 

representation can be found that SR is reasonably a useful algorithm for them (X. Lu, H. Wu, Y. 

Yuan, P. Yan, and X. Li, 2013; Y. Yuan, X., Li, Y., Pang, X., Lu, and D., Tao., 2009), such that 

image classification can be mentioned, where the basic goal is to classify an image based on the 

predefined groups. The sparse representation based classification method dose not differ with the 

fundamental concepts of compress sensing (CS) theory which is including sparse representation, 

encoding measuring, and reconstruction algorithms (M. Elad., 2010).  The sparse representation 

classifications (SRC) generally assumes that there exists a linear combination of a class sample 

that can approximately represent the given test sample 𝑥from the same class (4.2). SRC computes 

the sparse representation coefficients of the linear system of equations and eventually measures 

the reconstruction error called residuals for each individual class by employing their corresponding 

training sample and sparse coefficients that contributes to the approximation. Ultimately, the test 

sample 𝑥 will be assigned to that class that expose minimum construction error (residual) given 

by,  

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟𝑗(𝑥) =arg min‖𝑥 − 𝐷𝑗𝛼𝑗‖2, 𝑗 = 1,2,3,… , 𝐶
(4.6). 

 

Sparsity based method has shown great superiorities for image classification task since it deals 

very well with corrupted/noisy image (Z. Zhang, Z. Li, B. Xie, L. Wang, and Y. Chen., 2014). The 

sparse approximation for image classification can be expressed in two main categories in terms of 

the way of exploiting the atoms; (i) holistic representation based method and local representation 

based method. Holistic representation based method exploit the training sample of all classes to 
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represent the test sample, while local representation based method employs only the column 

vectors (atoms) of individual and/or several class at the same time (Y. Xu, D. Zhang, J. Yang, and 

J. Yang., 2011). On the other hand the approximation of𝑥by means of dictionary D, the family of 

the representation 𝛼satisfying (2.4) is actually infinitely large with the degree of freedom identified 

with the null-space of D (Rubinstein, R., Bruckstein, A.M., Elad, M., 2010). Therefore, we must 

optimize the representation family to a set of informative representation coefficients that 

approximately satisfies the problem in (4.2). Hence, this problem can be reformulated as (4.7) with 

respect to some cost function. 

                     𝛼 = arg 𝑚𝑖𝑛
𝛼
𝐶(𝛼)   Subject to  𝑥 = 𝐷𝑘𝛼𝑘(4.7) 

Practical choice of cost functional 𝐶(𝛼) promotes sparse representation of the coefficients. Indeed, 

we want the sorted coefficients to decay quality. Hence, solving problem in (4.7) is referred to 

sparse recovery principle. We can define a cost function as some robust penalty function, which 

can be loosely defined as a function that is tolerant to large coefficients but strictly penalizes small 

non-zero coefficients. Sparse representation in terms of optimization are consider in four 

optimization problems, (i) the smooth convex problem, (i) non-smooth convex problem (ii) smooth 

non-convex problem, and (ii) non-smooth non-convex problem (J. A. Tropp, A. C. Gilbert, and 

M. J. Strauss, 2006; Tropp, 2006). Thus, the temptation of the convexity motivated us to use the 

least squire solution. Although, the least squire is a convex function but the choice of penalty 

𝑙𝑝where0 < 𝑝 < 1, for sparsity makes the problem hard (not differentiable) since the p≤1 is not a 

convex problem. First, let us consider our objective functional for the optimization problem given 

by, 

𝑚𝑖𝑛
𝛼
‖𝑥 − 𝐷𝛼‖2 + 𝜆‖𝛼‖1(4.8). 

There is a vast literature regarding solving the problem in (4.8), but it is very important to pick up 

the one and develop it that fits the data best, by means of accuracy and computational time load. 

However, for solving this unconstrained problem we start with a proximity optimization (Iterative 

soft-shrinkage) approach easy to compute and to implement schemes. This is followed by an 

efficient acceleration with proceeded descent method. Ultimately, we end up with optimization 

problems with joint sparsity measures that lead to sparse block-wise recoveries directly yielding 

the classification result. The following sections detail the steps mentioned above.        

4.4.1. 𝑙1Sparse recovery via Soft-Shrinkage Iteration.    

Consider the model  

𝑥𝛿 = 𝐷𝛼 + 𝜖(4.9),  

where𝑥𝛿 ∈ 𝑅𝐵 is the given pixel to be classified, 𝐷 ∈ 𝑅𝐵×𝑑is the dictionary in which B and d denote 

the number of spectral feature (band) and number of training sample respectively, and 𝛼 =

[𝛼1
𝑇𝛼2

𝑇…𝛼𝐶
𝑇] represent the coefficient of the model. In order to recover 𝛼, we have to solve the 

minimization problem given by  
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𝑚𝑖𝑛
𝛼
‖𝑥𝛿 − 𝐷𝛼‖

2
+ 𝜆‖𝛼‖1(4.8). 

Suppose |‖𝐶‖| < 1(otherwise rescale the system). Then an iterative computation is given by,  

𝛼𝑛+1 = 𝑆𝜆 2⁄ (𝛼𝑛 + 𝐷𝑇(𝑥𝛿 −𝐷𝛼𝑛)) (4.10)   

4.4.2. 𝑙1 Constrained Recovery via Projected Steepest Descent Iteration.    

The method in (4.10) can be easily accelerated by applying the projected steepest descent method, 

which is described in Section 2.3.1.1 of Chapter 2. Indeed, the problem in (4.8) formulated as an 

unconstrained optimization problem. Consequently, the model in (4.10) will be associated with a 

constraint called step length, in order to compute the backward, forward minimization and find the 

steepest direction that leads to not only faster even global convergence. Starting point is to separate 

the cost function and the penalty term from each other that are concatenated as the optimization 

function (4.8). In other words, braking down the non-smooth function to local minimization 

problem by computing the gradient within each step length. Hence, all of the local gradient will 

give the representation of the global minimum. The procedure goes as follows: Consider the 

following optimization problem, 

        𝑚𝑖𝑛
𝛼∈𝐵𝑘(𝑙1)

‖𝑥𝛿 − 𝐷𝛼‖
2
(4.11), 

resulting in the projected iteration, 

           𝛼𝑛+1 = 𝑃𝐵𝑘(𝑙1) (𝛼
𝑛 + 𝛽𝑛𝐷𝑇(𝑥𝛿 − 𝐷𝛼𝑛)) (4.12), 

 

where 𝐵𝑘𝑙1 = {𝑌 ∈ 𝑙2: ‖𝑌‖1 ≤ 𝐾} and the step length control𝛽𝑛. 

Based on the derived𝛼, we are now able to classify𝑥. This approach delivers some sparse 𝛼 but 

where the recovered non-zero coefficients are very likely distributed across different classes, i.e. 

an extra classifier must be applied to assign 𝑥 to one class. This also can be done based on the 

introduced minimum residual classifier (2.6).  

4.4.3. Joint Sparsity Measure Recovery using Projected Steepest Descent iteration. 

The essential goal (and the possible advantages of this approach) is to identify in a unique way 

that dictionary that is most relevant for the sparse representation of𝑥. The optimization problem is 

almost the same but with the joint sparsity or so-called block sparsity measure given by, 

𝑚𝑖𝑛
𝛼∈𝐵𝑘(𝑙1)

‖𝑥𝛿 − 𝐷𝛼‖
2
+ 𝜆∑ |‖𝛼𝑘‖2|

𝐶
𝐾=1 (4.13), 

or the constrained version leading to the projected steepest descent,  

𝑚𝑖𝑛
𝛼∈𝐵~𝑘(𝑙1)

‖𝑥𝛿 − 𝐷𝛼‖
2
(4.14), 
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Where 𝐵~𝑘𝑙1 = {𝑌 ∈ 𝑙2: ∑ |‖𝑌𝑘‖2|
𝐶
𝐾=1 ≤ 𝐾}. The resulting method is again the projected steepest 

descent iteration, 

𝛼𝑛+1 = 𝑃𝐵~𝑘(𝑙1) (𝛼
𝑛 + 𝛽𝑛𝐷𝑇(𝑥𝛿 − 𝐷𝛼𝑛))4.15, 

Where 𝐵~𝑘𝑙1 = {𝑌 ∈ 𝑙2: ∑ |‖𝑌𝑘‖2|
𝐶
𝐾=1 ≤ 𝐾} and the step length control𝛽𝑛. The essential difference is 

the structure of the projector𝑃𝐵~𝑘(𝑙1).  

The Joint sparsity algorithm has the properties of the two previous algorithms (developed version 

of Iterative Soft Shrinkage algorithm) and provide a new functionality via shrinking the non-

relevant coefficients to zeros in a block-wise manner. It works in the way that the norm of each 

individual class gets computed at each iteration and when the computed norm is equal or less than 

the given threshold the coefficients of that class well be jointly set to zero. Otherwise, another 

optimality condition operation must be assigned.  

4.5. Condensation of the a-prior given dictionaries. 

Dictionary is the core component of sparse recovery algorithms. Indeed, constructing an 

informative dictionary is a key step for sparsity-based model. Once the atoms in a dictionary 

presented in an optimal manner we are able to significantly reduce the computational time load 

and represent the given pixel in a sparest manner. The dictionary should inferred from data, and 

for a classification task, a label for each member should be given in prior.  

 

4.5.1. Geometric base dictionary construction. 

In linear inverse problem, it is expected that a discriminate dictionary can learned from training 

samples so that a test sample can be truly represented for classification (Feng Z., Yang M., Zhang 

L., Liu Y., Zhang D., 2013). A dictionary is constructed by concatenating several sub-dictionaries. 

Therefore, constructing a sub-dictionary involves a main issue, which is being a redundant set of 

column vectors (samples/atoms) that present the main directional space. In another word, being a 

full rank matrix. The other issue is that it also might be considered as the inequality in the number 

of sample for each class (sub-dictionary). The number of training sample for each individual class 

may not be equal, which is a common problem in classification tasks. This problem of the data is 

called imbalanced data problem (Zou, X., Feng, Y., Li, H., and Jiang, S., 2017). Hence, imbalanced 

data refers to classification problems where we have unequal samples/instances for different 

classes. For example, assume we have three classes (sub-dictionary) that are stored in a dictionary 

D given by; 

𝐷 = [𝐷1 𝐷2 𝐷3] ∈ ℝ
𝐵 ×𝑑,  

Where B and d denote the number of sample dimension and number of training sample 

respectively. Let us consider  𝑑 = (𝑑1 +  𝑑2 +  𝑑3)  where 𝑑 =  5500, in which 𝑑1 = 100, 𝑑2 =

2000, and 𝑑3 = 3400. Another words 𝐷1 ∈ ℝ
𝐵 × 100, 𝐷1 ∈ ℝ

𝐵 × 2000, and 𝐷1 ∈ ℝ
𝐵 × 3400 . As 

shown the number of sample in each class is obviously different, particularly in the first class (𝑑1). 
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This is called imbalanced data problem that might have several consequences such as miss 

classification, and computational time load. Hence, to tackle the above issues, we proposed a 

geometric base dictionary where Principal Component Analysis (PCA) strategy elegantly 

implemented to be apply on each individual sub-dictionary. PCA can solve two main problems in 

data representation, on one hand, redundant training sample can decrease the computational time 

load and on the other hand, it leads to the enhancement of discrimination between different classes 

in dictionary (Feng Z., Yang M., Zhang L., Liu Y., Zhang D., 2013). The PCs space are given by 

an orthogonal linear transformation. This property allows us to choose the most informative 

samples that retain the most variation in the dataset while they are not in the span of each other, 

another words, the represented samples are a set of redundant set in which they are linearly 

independent (Jolliffe, 2002). There are two numerical methods to calculate the principal 

components. The first method is eigenvalue decomposition (EVD), that is applied only on diagonal 

matrix i.e. 𝐴𝑇𝐴, while the second one uses the Singular Value Decomposition (SVD) method which 

can be applied directly on the data matrix. The implementation of PCs space via EVD described 

in the next section.  

4.5.1.1. Principle Component Analysis via Eigenvalue Decomposition (EVD). 

Principal Component Analysis (PCA) is an important dimension reduction tool which finds the 

orthogonal directions reflecting the maximal variation in the data. This allows us to present the 

data in a lower dimensional, by projecting data onto these directions (Shen, D., Shen, H., Marron, 

J.S., 2016). PCs space via eigenvalue decomposition, are obtained from a diagonal matrix, 

variance-covariance matrix (a positive semi-definite matrix) of the data.  

 

 

Covariance Matrix    

The covariance, or variance, matrix is a diagonal matrix of the data sample. The output of a 

covariance matrix is a squire matrix. The covariance matrix is a positive semi definite 𝑐𝑜𝑣𝑖𝑗 

=(𝑐𝑜𝑣𝑖𝑗)
𝑇
 in which variance are represented in diagonal entries. 

 

The input matrix for computing covariance matrix for each individual sub-dictionary can be given 

as follows:  

Consider the 𝐷1 to be sub-dictionary 1; 

 

𝐷1 = (
𝑥(1,1) ⋯ 𝑥(1,𝐵)

⋮ ⋱ ⋮
𝑥𝑑,1 ⋯ 𝑥(𝑑,𝐵)

) ∈ 𝑅𝑑×𝐵 

 

Where B and d denote the number of bands (feature dimension) and number of training sample 

(observation) respectively. In the next stage the training sample is centered by subtracting the mean 

value of each training sample in B dimension from each data point in B dimension. Another words, 

the mean should be computed in row for the above matrix.  
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Compute mean in row: 

 

𝜇𝑖 =
1

𝐵
∑ 𝑥𝑖
𝐵
1 , where 𝑖 = 1,2,3,… , 𝑑(4.16) 

 

(

 
 
 
 
 
 

𝜇1 =
1

𝐵
∑ 𝑥1
𝐵
1

𝜇2 =
1

𝐵
∑ 𝑥2
𝐵
1

𝜇3 =
1

𝐵
∑ 𝑥3
𝐵
1

.

.

.

𝜇𝑖 =
1

𝐵
∑ 𝑥𝑖
𝐵
1 )

 
 
 
 
 
 

=

(

 
 
 

𝜇1
𝜇1
𝜇3.
.
.
𝜇𝑖)

 
 
 

∈ 𝑅𝑑       (4.16) 

 

Then the covariance of the data samples 𝑑𝑖 and  𝑑𝑗 where 𝑖 ≠ 𝑗 in 𝐵dimension is given by, 

 

𝐶𝑜𝑣(𝑑𝑖 , 𝑑𝑗) =
1

𝑑−1
∑ (𝑥𝑖 − 𝜇)(𝑥𝑗 − 𝜇)
𝑑
1 4.17, 

Or 

𝛴 = 𝐶𝑜𝑣(𝐷) = 𝐸((𝐷 − 𝜇)(𝐷 − 𝜇)𝑇). 

 

Eventually the covariance matrix 𝛴 can be represented as following; 

 

 

𝛴 = (

𝑣𝑎𝑟(𝑑1, 𝑑1) ⋯ 𝐶𝑜𝑣(𝑑1, 𝑑𝑑)

𝐶𝑜𝑣(𝑑𝑑 , 𝑑1) . 𝐶𝑜𝑣(𝑑𝑑 , 𝑑1)
⋮ ⋱ ⋮

𝐶𝑜𝑣(𝑑𝑑 , 𝑑1) ⋯ 𝑣𝑎𝑟(𝑑𝑑 , 𝑑𝑑)

) ∈ 𝑅𝑑×𝑑 

 

A positive value indicates the positive correlation between data samples and a negative value 

represent the negative relation and eventually a zero value of covariance represent the 

independency between the samples in a particular sub-dictionary.   

 

Compute the Eigenvalue Decomposition 

A (non-zero) vector 𝑉 of dimension d is an eigenvector of a square d × d matrix 𝛴 (covariance 

matrix) if it satisfies the linear equation given by, 

𝑉𝛴 = 𝜆𝑉(4.18), 

where 𝑉and 𝜆 denote the eigenvector and eigenvalue of covariance matrix respectively. The 

eigenvalues are the scaler values and eigenvector are the principle component vectors with non-

zero entry. The eigenvectors represent the direction of PCA space and the eigenvalue are the scalar 

multiplication of eigenvector that represent the robustness of the eigenvector (Hyvärinen, 1970; 

Strang, G., & Aarikka, K. , 1986). Accordingly, the problem is to solve the linear system of 

equation in (4.18) for eigenvalues given by, 
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𝑝(𝜆) = 𝑑𝑒𝑡(𝛴 − 𝜆𝐼) = 0(4.19) 

 

Eventually the eigenvalue decomposition of the covariance matrix 𝛴 is given by  

𝛴 = 𝑄𝛬𝑄−14.20, 

where 𝑄 is the square d × d matrix whose i-th column is the eigenvector qi of𝛴, and 𝛬 is the 

diagonal matrix whose diagonal elements are the corresponding eigenvalues𝛬𝑖𝑖 = 𝜆𝑖. After 

factorizing the covariance matrix of the given sub-dictionary, we are able to select the K-th 

eigenvalues that retain the maximum variance in respect to the magnitude of their corresponding 

eigenvalue. Figure 4.1 represent the working follows of computing Pcs space via eigenvalues 

decomposition.  

 

Figure2. Depict the steps for computing PCs space via eigenvalue decomposition.   

The projection of the data to the lower dimension goes as follows: 

 In order to construct the lower dimension of PCA space, a linear combination of the first k number 

of eigenvector (PCs) that have the higher eigenvalues are selected in order to retain the maximum 

variance in the dataset. Thus, the lower dimension is find as𝑊 = (𝜈1, 𝜈2, 𝜈3, … 𝜈𝑖). Eventually the 



41 
 

diminution of the data is reduced by projecting the original data in sub-dictionary to the lower 

dimension of PCs space (figure 4.2) which is given by following, 

𝑌 = 𝑊𝑇𝐷1 =∑𝑊𝑇(𝑥𝑖 − 𝜇)

𝑑

𝑖=1

(4.21) 

where 𝑌 ∈ 𝑅𝑘  is the projected data in lower dimension (W). Therefore, the dimension of sub-

dictionary is reduced from 

𝐷1 ∈ 𝑅
𝑑×𝐵     to     𝑌 ∈ 𝑅𝐾×𝐵  

The projection depicted in figure 4.2.  

 
Figure 4.2. Illustrate the projection of the original data to the lower dimension. 

 

Robustness of Pcs space.  

Eventually the validity test of choosing the K number of principle component (eigenvalue) can be 

examined by their corresponding eigenvector. Indeed, the main parameter in PCA that needs to be 

adjusted is the number of PCs (k) to be selected. Hence, the robustness of PCA space can be control 

by k number of selected eigenvector and measured by the division of sum of the k selected 

eigenvalues by sum of all eigenvalues given by, 

𝑅𝑅 =
∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑖
𝐵
𝑖=1

≥ 95(4.21), 

where RR is the Robustness Ratio for k (Abdi, H., & Williams, L. J., 2010).  
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Chapter 5 

5.1. Experimental design  

Hyperspectral images are the result of indirect measurements. This type of measurements always 

are contaminated with noise. In addition, they have several limitations that needs to be resolved. 

Lastly, this un-structural data sets do not follow the homogeneity property and prone to be big 

data. Thus, performing a classification task on such dataset needs advanced and efficient 

algorithms. Furthermore, using such data set for operational decisions needs scalable algorithms 

for the streaming application. Processing big data especially in stream application needs fast and 

simpler algorithms that also provide reliable result. Therefore, sparse representation is proposed 

as an effective algorithm. In sparse representation it turns out that many coefficients are not needed 

(Qazi Sami ul Haq, et all, 2010) by restricting them by a regularization parameter to keep them 

small and set to zero that also lead to avoid overfitting. Thus, the image size can be reduced. Linear 

representation methods have been extensively studied (B. K. Natarajan, 1995) and draws many 

attentions in real life application problems (M. Huang, W. Yang, J. Jiang, Y. Wu, Y. Zhang,, 2014). 

Sparse representation is one of the linear representation methods, which has been proven being 

highly efficient and powerful solution to a wide range of application particularly in signal 

processing, image processing, machine learning and computer vision such as image denoising, 

image classification and image segmentation (Zhang Z., Xu Y., Yang J., Li X., Zhang D., 2016). 

5.2. Background and relevant work. 

Sparse representation based classification where the main goal is to classify the given pixel based 

on a set of predefine categories. The sparse representation base classification (SRC) first assumes 

that there exist a set of linear combination mechanism between features/training samples that the 

approximation of their coefficients lead to an efficient representation (least non-zero entries) of 

the given test sample from the same subject. Eventually by calculating the residual of each class, 

employing the sparse representation coefficient and test samples will be assigned to that class with 

the minimum residual (Zhang Z., Xu Y., Yang J., Li X., Zhang D., 2016).  Sparse representation 

classification can be done via supervised classification approach, where there exist a prior-

knowledge for each class. Indeed, based on the availability of ground truth supervised learning 

preformed to classify new given pixel (test pixel) based on the training pixels, which used for the 

construction of dictionary. In recent years, sparse representation has gained a great attention in 

hyperspectral image classification (Chen, Y., Nasrabadi, N.M., Tran, T.D., 2011; Zhang, H.; Zhai, 

H.; Zhang, L.; Li, P., 2016; Zhang H., Li J., Huang Y., Zhang L., 2014; Chen Y., Nasrabadi N.M., 

Tran T.D., 2013; Wang J., Jiao L., Liu H., Yang S., Liu F., 2015; Bian X., Chen C., Xu Y., Du Q., 

2016; Chen C., Chen N., Peng J., 2016). There are many algorithms for hyperspectral image 

classification. 

Such algorithms like Support Vector Machine demonstrate a significant performance and results 

are comparable to the tradition algorithm used for remote sensing imagery classification (Fauvel, 

M., Benediktsson, J. A., Chanussot, J., Sveinsson, J. R., 2008). Despite the capability of SVM for 

classification, in hyperspectral images there exist several difficulties explained above that makes 
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the classification problem more challenging. In order to overcome those difficulties, the 

contribution of spatial information along with spectral signature becomes very popular (Bian, X., 

Zhang, T., Yan, L., Zhang, X., Fang, H., Liu, H., 2013). Such that (Hu, L., Qi, C., Wang, Q., 2018) 

developed a classification approach by integrating spatial information with spectral values using 

an SVM base classifier, and their result demonstrate a significant improvement in hyperspectral 

image classification. Recently, sparse representation algorithms have been used for hyperspectral 

image classification (Huang A, Zhang H , Pižurica A., 2017). In fact, sparse representation for 

remote sensing images classification has found its boundary by accepting the concept that via 

cooperating spatial information with spectral information the performance of classification will be 

highly improved (Song B., Li J., Mura M., Li P., Plaza A., José M,. Dias B., Benediktsson J., 

Chanussot J.,, 2014). Song et. al. has proposed to exploit sparse representations of morphological 

attribute profiles for remotely sensed image classification. They have integrated both spatial and 

spectral information and have eventually used sparse recovery to reduce the high dimensionality 

of the given data for both multi and hyperspectral images (Song B., Li J., Mura M., Li P., Plaza 

A., José M,. Dias B., Benediktsson J., Chanussot J.,, 2014). Similarly, Chen et.al has introduced a 

joint sparse representation classification (JSRC) algorithm for HSI classification. The proposed 

model is based on the prior knowledge that the pixels in a patch describe the same spectral 

characteristics, which can be represented by a common set of atoms in dictionary (Chen, Y., 

Nasrabadi, N.M., Tran, T.D., 2011). Huang et. al. have proposed another sparse representation for 

hyperspectral image classification. They have integrated sparse and Gaussian noise along with 

cooperating spatial and spectral information to develop the classification of HSI using sparse 

representation. Furthermore, they have called the successful proposed algorithm joint sparse 

recovery classification (Huang A, Zhang H , Pižurica A., 2017). These approaches involve the 

problem of choosing the window size for integrating of spatial information. However, utilizing 

sparse representation algorithms needs a comprehensive understanding of them, which is not in 

the scope of this thesis but for more details please refer to this paper (Zhang Z., Xu Y., Yang J., Li 

X., Zhang D., 2016). In all the previous work for HSI classification using sparse representation the 

development is only done on construction of dictionary by exploiting spatial and spectral 

information and eventually the optimization function is solved using greedy algorithm such as 

orthogonal matching pursuit (OMP) (Huang A, Zhang H , Pižurica A., 2017). In addition, the 

integration between spatial and spectral information can affected by the Hughes phenomena 

(Hughes, 1968) (the limited amount of trading sample). Hence, sparse representation classification 

considers this problem and shows a better performance (Wang, H., H., Turgay., 2018). In this 

thesis, a geometric base dictionary has been proposed along with an advanced version of proximity 

algorithm to recover the corresponding coefficient sparsely while providing high accuracy and 

efficient computational cost load. In this thesis, we only exploit spectral information and hence the 

spatial information of the given dataset is not considered in the construction of the dictionary.  
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Figure 5.1. Demonstrates the classification task via SVM and Sparse representation Classification 

(SRC) (Shin, Y., Lee, S., Ahn, M., Cho, H., Jun, S.S., Lee, H., 2015). 

 

 

5.3. Experiments 

In this section, the details of applying the proposed sparse representation schemes for hyperspectral 

image classification are discussed, and the results in each stage of the development for 

hyperspectral image classification are provided. Later in the Section 5.3 and its subsections, we 

evaluate the performance of the proposed schemes, and eventually we end up with comparing the 

performance of the proposed package in each stage of its development. Figure 5.2 illustrates the 

general working follow of proposed efficient sparse signal recovery algorithm for hyperspectral 

image classification. The details of construction of the geometric based dictionary discussed in 

section 5.2.2.1.  
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Figure 5.2. The General working diagram for proposed efficient sparse signal recovery algorithm 

for hyperspectral image classification.    

5.3.1. Data Set Description 

In this thesis in order to evaluate the capability of the proposed efficient sparse signal recovery 

algorithm for classification task, we use Indian pines dataset presented in 200 bands and the scene 

size of 145 × 145 pixels, which acquired by AVIRIS sensor1. 

 

 

1  This dataset is freely available at: 

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes 

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Figure 5.3. (a) Represent the Indian Pines scene, (b) its corresponding ground truth in16 classes, 

and (c) the legend of the corresponding classes.    

Indian Pines has the spatial resolution of 20 m. Two-thirds of this scene is covered by agriculture 

crops, and one-third by forest and other perpetual vegetation. The corresponding class for each 

pixel represented in 16 classes in an image called ground truth (figure 5.3). The associated classes 

for Indian Pines dataset presented in table 5.1. 

 

Table 5.1. Sample size for Indian Pines dataset. 

The classes are not mutually exclusive. Here, we choose only four classes for evaluation of our 

proposed package. The classes used in experimental designed are including class 4, 5, 14, and class 

16. In order to present the data to the algorithms, the dataset randomly separated in two parts called 

training and testing/validation set. 70 present is used to design the dictionary and 30 present 

utilized for validation. Table 5.4 represent the samples size for each class and their pixel value in 

200 dimensions. 
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Figure 5.4. Left side represent the sample size for each class, and in the right side the pixel 

values are represented for the chosen classes in 200 spectral bands. 

5.3.2. Experimental Design  

Consider a given test pixel 𝑥 ∈ 𝑅𝐵 to be classified. Hence, if 𝑥 is a member of k-th class stored in 

the dictionary 𝐷, then it should be close to one of the atoms in 𝐷𝑘. In other words, a pixel 𝑥 ∈

𝑅𝐵can be modeled as a linear combination of a set of vectors 𝑑 = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛} called atoms 

in dictionary. Hence, we can present the given class in (5.1). Figure 5.3 depicts a general form of 

sparse recovery.    

𝑥 = 𝐷𝛼 + 𝜖1.5 

 

Figure 5.4. Demonstrates the sparse recovery concept, where only a linear combination of few 

nonzero elements and their corresponding atoms are needed to represent the given test sample. 

Here 𝑥 ∈ 𝑅𝐵 is the given test pixel in which B denotes the spectral dimension, 𝐷 ∈ 𝑅𝐵×𝑑 denotes 

the dictionary that has the B dimensional spectral bands and d is the number of training sample 
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stored as column vectors, also called atoms, 𝜖 ∈ 𝑅𝐵 is the Gaussian noise, and 𝛼 ∈ 𝑅𝑑 is the sparse 

coefficients, that is given by the following property   

‖𝛼𝑘‖𝑅𝑑𝑘
2 ≫ ‖𝛼𝑗‖𝑅𝑑𝑗

2
 for all 𝑗 ≠ 𝑘.  (5.2) 

Then, the optimization problem is given by  

𝑚𝑖𝑛
𝛼
‖𝑥𝛿 − 𝐷𝛼‖

2
+ 𝜆‖𝛼‖1(4.8) 

Since this problem is not smooth (discussed in chapter 4), we develop a classification principle by 

implementing a fundamental approach that has an easy and efficient scheme to tackle the problem. 

By employing proximity techniques, we could relax the problem (4.8), and in the next stage, we 

convert this unconstrained problem to a constrained problem in order to accelerate the 

implemented proximity algorithm and possibly improve the accuracy. Eventually, we develop the 

optimization formula further as a joint sparsity algorithm that helps to identify a unique dictionary 

that is clearly identify the given test sample.  

For designing the efficient sparse signal recovery algorithm for hyperspectral data, we reshape the 

array of 145 × 145 × 200 Indian Pines dataset to a matrix of 21025 × 200, after that, the four 

mentioned classes extracted from the scene. Each class is represented as a sub-dictionary. In order 

to present an informative dictionary for the proposed schema, we design a geometric dictionary by 

applying singular value (SVD) on each sub-dictionary. Thus, the principle direction space of each 

sub-dictionary is represented by choosing a sufficient amount of redundant sample space. In the 

next step, we concatenate all the four sub-dictionary (classes) in a matrix called dictionary. Before 

applying the proposed algorithm on given dictionary and test set, in order to have a unit 𝑙2-norm 

the atoms in dictionary normalized. Atom normalization is a step that in some point become crucial 

especially when one implementing iterative and algorithm that needs to converge. The 

Normalization is done using the following equation, 

𝑧 =
𝑑𝐶 − 𝜇𝐶
𝜎𝐶

(5.6) 

Here, 𝑑𝐶 denotes the C-th atom, 𝜇𝑖 denotes the mean value over all feature dimension (bands) for 

C-th atom, and 𝜎𝐶 represent the standard deviation of C-th atom over all feature dimension (bands). 

Standard deviation expresses the data dispersion around the center (mean).  The input matrix for 

scaling the atoms for each individual sub-dictionary can be given as follows,  

 

𝐷 = (
𝑥(1,1) ⋯ 𝑥(1,𝑑)

⋮ ⋱ ⋮
𝑥𝐵,1 ⋯ 𝑥(𝐵,𝑑)

) ∈ 𝑅𝐵×𝑑 

     

where B and d denote number of bands (feature dimension) and number of atoms (observation) 

respectively, and 𝑥 represent the pixel.  
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Compute mean: 

 

𝜇𝐷 = [𝑑1 =
1

𝐵
∑𝑥𝑖

𝐵

𝑖=1

, 𝑑2 =
1

𝐵
∑𝑥𝑖

𝐵

𝑖=1

, … , 𝑑𝐶 =
1

𝐵
∑𝑥𝑖

𝐵

𝑖=1

] ∈ 𝑅1×𝑑(5.7) 

 

 

Compute standard deviation: 

 

 

𝜎𝐷 =

[
 
 
 

𝜎1 = √
1

𝐵
∑(𝑥𝑖 − 𝑑1)

2

𝐵

𝑖=1

, 𝜎2 = √
1

𝐵
∑(𝑥𝑖 − 𝑑2)

2

𝐵

𝑖=1

, … , 𝑑𝐶 = √
1

𝐵
∑(𝑥𝑖 − 𝑑𝐶)

2

𝐵

𝑖=1
]
 
 
 

∈ 𝑅1×𝑑(5.8) 

 

Compute Standardization Equation: 

(
𝑥(1,1) ⋯ 𝑥(1,𝑑)

⋮ ⋱ ⋮

𝑥𝐵,1 ⋯ 𝑥(𝐵,𝑑)
)−(

𝑑1
𝑑2...
𝑑𝐶

)

(

𝜎1
𝜎2...
𝜎𝐶

)

=

(
𝑥(1,1)−𝑑1 ⋯ 𝑥(1,𝑑)−𝑑𝐶

⋮ ⋱ ⋮

𝑥𝐵,1−𝑑1 ⋯ 𝑥(𝐵,𝑑)−𝑑𝐶

)

(

𝜎1
𝜎2...
𝜎𝐶

)

= (
𝑥(1,1) ⋯ 𝑥(1,𝑑)

⋮ ⋱ ⋮
𝑥𝐵,1 ⋯ 𝑥(𝐵,𝑑)

) ∈ 𝑅𝐵×𝑑  

 

Eventually the classification is done for each step of the development of the proposed efficient 

sparse signal recovery algorithm. The results of classifications for each stage of the development 

are given in the next sections. 

5.3.2.1. Dictionary Construction 

Dictionary is the core component of sparse recovery algorithms. Indeed, constructing an 

informative dictionary is a key step for sparsity-based model. Once the atoms in a dictionary are 

presented in an optimal manner we are able to present the given test pixel while significantly 

reduce the computational time load. Hence, in order to ensure sufficient number of useful bases 

for sparse representation we apply PCA via Eigen Value Decomposition (EVD) on sub-

dictionaries and the main components of all sub-dictionary concatenated together. Another words, 

we construct a full rank matrix for each individual sub-dictionary that presents only the main 

information of its class members. Therefore, we are able to transfer the data form a complex higher 

dimensional set to a lower and informative dimension in which the samples of each individual 

class is orthogonal set (linearly independent set). Having use of EVD allows us to construct a well 

informative dictionary that leads to the high level of sparsity. The dictionary construction 

procedure using EVD goes as follows;  

Consider a dictionary 𝐷 ∈ 𝑅𝐵×𝑑 that contains three sub-dictionary given by   

𝐷 = [𝐷1, 𝐷2, 𝐷3](4.9) 
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where each sub-dictionary may have different number of sample that represent a specific class. 

Now let us consider one of these classes e.g. 𝐷1 that has 2500 samples in B dimension, which is a 

huge amount of data to represent. In addition, hyperspectral images are prone to have mix-pixel, 

which makes it difficult to present the end member. Therefore, this idea comes from where that 

PCA utilized for dimensionality reduction and help to a better representation of the state of the art 

endmember that is also a common task in hyperspectral pix-unmixing, which is also called the 

intra-class variability problem (Andreou, C., Karathanassi, V, 2011; Deville, Yannick., Revel, C., 

Achard, V., Briottet, X, 2018). This motivation encourages us unlike the other research works in 

construction of dictionary to perform a PCA based eigenvalue on individual sub-dictionary and 

hence reduce the number samples and present the basses representation for each class. Hence, we 

would like to transfer 𝐷1 ∈ 𝑅
𝐵×𝑑 to 𝐷1 ∈ 𝑅

𝐵×𝑘 ,where k < d, and this process is generalized for all 

sub dictionaries. In order to reduce the number of training sample to a reasonable amount, we 

compute the eigenvalues and eigenvectors of the covariance matrices computed form each sub-

dictionary. In the next stage, the eigenvalues on the diagonal sorted in a descending manner along 

with their corresponding eigenvalue and the projection done on the few first components according 

to the magnitude of their eigenvalues in which we could retain more than 95 present of the variation 

for each class. Figure 5.5 demonstrate the diagram of Geometric dictionary construction.  

 

5.5. Geometric Dictionary construction approach. 
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5.4. Experimental Result 

In this section, the proposed algorithm is applied on the Indian Pines dataset in each stage of its 

development. In the first stage, Iterative Soft –Shrinkage Thresholding (ISST) is applied and the 

result presented both in terms of accuracy and computational time. In the second stage, the steepest 

is contributes in order to accelerate the ISST and deal with large coefficients. Lastly, the Joint 

Sparsity measurement is applied on the given dataset in order to identify the corresponding sub-

dictionary for the given test pixel. Figure 5.6 demonstrates the classification task on hyperspectral 

image via proposed efficient sparse signal recovery algorithm.   

 

 

Figure 5.6.  Illustrate the experimental design on hyperspectral image via proposed efficient sparse 

signal recovery. As it shown, the given test sample classify based on the minimum residual of the 

reconstruction error called residual.  
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5.4.1. 𝑙1Sparse recovery via Soft-Shrinkage Iteration.    

As we discussed in chapter 4, we first start with an easy scheme to implement that leads to the 

sparsity measurement of the recover coefficients. Algorithm 1 represents the steps of 

implementation of Iterative Soft-Shrinkage Thresholding for hyperspectral image classification. 

 

Algorithm 1. 𝓵𝟏 Sparse Recovery by Iterative Soft-Shrinkage  

To solve: 

𝐦𝐢𝐧
𝜶
‖𝒙𝜹 −𝑫𝜶‖

𝟐
+ 𝛌‖𝜶‖𝟏       (𝟒. 𝟖) 

 

Input: (a) Geometric Dictionary (𝑫 ∈ ℝ𝑩×𝒅), with normalized sample to have unit 𝓵𝟐-norm (eq. 5.6), (b) 

Test sample 𝒙 ∈ ℝ𝑩×𝟏, (c) Threshold 𝝀 > 𝟎, (d) Number of iteration, 

(e) C = 𝒎𝒂𝒙(|𝒆𝒊𝒈𝒔(𝑫′ ∗ 𝑫)|);    

Initialization: coefficient 𝜶 ∈ ℝ𝒅×𝟏 = 𝟎  

Step1: Compute the coefficient (gradient of first term in 4.8)  

𝜶 = (𝑫𝑻(𝒙𝜹 − 𝑫𝜶)) ./𝑪         

Step 2: In each iteration update 𝜶 via Soft shrinkage 

𝕊𝟏(𝜶, 𝝀) = {
𝟎,                      𝒊𝒇    |𝜶| ≤ 𝝀

                         
𝒔𝒈𝒏(𝜶)(|𝜶| − 𝝀),      𝒊𝒇 |𝜶| > 𝝀     

 

 Step 3: Update 𝜶 until convergence  

𝜶𝒏+𝟏 = 𝕊𝝀/𝟐(𝜶
𝒏 + (𝑫𝑻(𝒙𝜹 − 𝑫𝜶)) ./𝑪   )         (𝟒. 𝟏𝟎)     

Step 4: Compute the residual of each sub dictionary to assign test pixel to its class. 

 

             𝒄𝒍𝒂𝒔𝒔(𝒙) = 𝐚𝐫𝐠 𝐦𝐢𝐧 𝒓𝒋(𝒙) =arg min‖𝒙 − 𝑫𝒋𝜶𝒋‖𝟐
, 𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑪     (𝟒. 𝟔). 

Step 5: Output label(𝒙).  

 

 

The result for the first step is presented in table 5.2. 
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Table 5.2. Performance of the ISST algorithm Parameter  

Performance Geometric Dictionary Over complete dictionary (low 

rank matrix) 

 

 

Number of 

Iteration  

 

 

 

 

 

Threshed  

 

 

150 

 

 

 

 

 

 

 

0.1 

Accuracy in 

percentage 

93% 73% 

Computation 

Time 

1700 sec/28 min 

 

12720 sec/212min 

Number of 

training sample 

1455 1455 

Number of Atoms 20 1455 

Number of test 

sample 

623 623 

 

As can be seen from the table, the performance of the geometric dictionary is significantly higher 

than the performance of the over complete dictionary. Indeed, both accuracy and computational 

time present a much better output using geometric dictionary than over complete dictionary.   

5.4.2. 𝑙1 Constrained Recovery via Projected Steepest Descent Iteration.    

In this stage, we inject a steepest descent algorithm in the soft shrinkage Iteration in order to 

converge faster and avoiding bias in terms of large coefficients. Algorithm 2 describes the steps of 

implementation of 𝑙1 Constrained Recovery via Projected Steepest Descent Iteration for 

hyperspectral image classification. The result for the second step presented in table 5.3. 

Table 5.3. Performance of the ISSTSD algorithm Parameter  

Performance Geometric Dictionary Over complete dictionary 

(low rank matrix) 

 

 

Number of 

Iteration  

 

 

 

 

 

 

Threshold  

 

 

120 

 

 

 

 

 

 

 

0.1 

Accuracy in 

percentage 

93% 75% 

Computation 

Time 

1360 sec/22 min 

 

12300 sec/205min 

Number of 

training sample 

1455 1455 

Number of Atoms 20 1455 

Number of test 

sample 

623 623 

 

According to Table 5.3, the result of the geometric dictionary is again significantly higher than the 

result of the over complete dictionary. The over complete dictionary is also called low rank matrix 
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and presents a set of atoms that are linearly dependent. Therefore, finding the relevant atoms needs 

lots of computation and the chance of having the sparsest coefficients is very low.  

 

Algorithm 2. 𝓵𝟏 Constrained Recovery via Projected Steepest Descent Iteration  

To solve: 

        𝐦𝐢𝐧
𝜶∈𝑩𝒌(𝓵𝟏)

‖𝒙𝜹 − 𝑫𝜶‖
𝟐
                           (𝟒. 𝟏𝟏) 

 

Input: (a) Geometric Dictionary (𝑫 ∈ ℝ𝑩×𝒅), with normalized sample to have unit 𝓵𝟐-norm (eq. 5.6), (b) Test 

sample 𝒙 ∈ ℝ𝑩×𝟏, (c) Threshold 𝝀 > 𝟎, (d) Number of iteration. (e) C = 𝒎𝒂𝒙(|𝒆𝒊𝒈𝒔(𝑫′ ∗ 𝑫)|);    

Initialization: coefficient 𝜶 ∈ ℝ𝒅×𝟏 = 𝟎 , 𝒔𝒕𝒆𝒑 𝒍𝒆𝒏𝒈𝒕𝒉(𝜷) = 𝟏, 𝑪𝟏 = 𝑪 ∗ 𝒔𝒕𝒆𝒑𝒍𝒆𝒏𝒈𝒕𝒉 

Step1: Compute the coefficient (gradient of the 4.11) 

𝜶 = (𝑫𝑻(𝒙𝜹 − 𝑫𝜶)) ./𝑪         

Step 2: In each iteration update 𝜶 via Soft shrinkage 

𝕊(𝜶, 𝝀) = {
𝟎,                      𝒊𝒇    |𝜶| ≤ 𝝀

                         
𝒔𝒈𝒏(𝜶)(|𝜶| − 𝝀),      𝒊𝒇 |𝜶| > 𝝀     

 

Step 3: In each iteration Check whether; 

𝑪𝒉𝒆𝒄𝒌 = 𝑪||𝜶𝒏+𝟏 + 𝟏 − 𝜶𝒏||
𝟐  −   ||𝑫( 𝜶𝒏+𝟏 − 𝜶𝒏)||

𝟐 >  𝟎 

𝑷𝑩𝒌(𝓵𝟏) = {
       𝜷 =  𝜷 ∗ 𝟎. 𝟖, 𝒂𝒏𝒅 𝑪𝟏 = 𝑪 ∗ 𝜷       𝒊𝒇 𝑪𝒉𝒆𝒄𝒌 > 𝟎

                         
 𝜷, 𝒂𝒏𝒅 𝑪            𝒊𝒇 𝑪𝒉𝒆𝒄𝒌 ≤ 𝟎     

 

 Step 4:  

Repeat step 1, 2, and 3 until convergence  

𝜶𝒏+𝟏 = 𝑷𝑩𝒌(𝓵𝟏) (𝜶
𝒏 + 𝜷𝒏𝑫𝑻(𝒙𝜹 − 𝑫𝜶𝒏))                        (𝟒. 𝟏𝟐) 

Step 5: Compute the residual of each sub dictionary to assign test pixel to its class. 

             𝒄𝒍𝒂𝒔𝒔(𝒙) = 𝐚𝐫𝐠 𝐦𝐢𝐧 𝒓𝒋(𝒙) =arg min‖𝒙 − 𝑫𝒋𝜶𝒋‖𝟐
, 𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑪     (𝟒. 𝟔). 

Step 6: Output label(𝒙).  
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5.4.3. Joint Sparsity Measure Recovery via Projected Steepest Descent iteration. 

Eventually, we end up with the proposed optimization strategy joint sparsity measurement that is 

able to select the relevant dictionary in a unique way. Algorithm 3 shows the steps of the 

implementation of Joint Sparsity Measure Recovery algorithm for hyperspectral image 

classification. The result for the second step presented in Table 5.4. 

 

Table 5.4. Performance of the JSM algorithm Parameter  

Performance Geometric Dictionary Over complete dictionary 

(low rank matrix) 

 

 

Number of 

Iteration  

 

 

 

 

 

 

Threshold  

 

 

90 

 

 

 

 

 

 

 

0.1 

Accuracy in 

percentage 

98% 80% 

Computation 

Time 

1058 sec/17 min 

 

12000sec/200min 

Number of 

training sample 

1455 1455 

Number of 

Atoms 

20 1455 

Number of test 

sample 

623 623 

 

As shown in Table 5.4, the resulting output for both dictionary is still significantly different, where 

the Geometric dictionary has a great impact on the representation of the relevant atoms (training 

sample) by presenting a set of redundant atoms that contains the main information of the given 

training set. Moreover, it should be mentioned that in this thesis only spectral information has been 

employed to construct the dictionary. It is possible to fuse the spatial information with spectral 

information and produce a spatial-spectral dictionary that may provide more discriminant details 

on individual classes. 
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Algorithm 3. Joint Sparsity Measure Recovery via Projected Steepest Descent iteration 

To solve: 

𝐦𝐢𝐧
𝜶∈𝑩𝒌(𝓵𝟏)

‖𝒙𝜹 − 𝑫𝜶‖
𝟐
+ 𝝀∑|‖𝜶𝒌‖𝟐|

𝑪

𝑲=𝟏

           (𝟒. 𝟏𝟑) 

 

Input: (a) Geometric Dictionary (𝑫 ∈ ℝ𝑩×𝒅), with normalized sample to have unit 𝓵𝟐-norm (eq. 5.6), (b) Test 

sample 𝒙 ∈ ℝ𝑩×𝟏, (c) Threshold 𝝀 > 𝟎, (d) Number of iteration. (e) C =𝒎𝒂𝒙(|𝒆𝒊𝒈𝒔(𝑫′ ∗ 𝑫)|), (f) N, an array 

of number of sample in each sub-dictionary.  

Initialization: coefficient 𝜶 ∈ ℝ𝒅×𝟏 = 𝟎 , 𝒔𝒕𝒆𝒑 𝒍𝒆𝒏𝒈𝒕𝒉(𝜷) = 𝟏, 𝑪𝟏 = 𝑪 ∗ 𝒔𝒕𝒆𝒑𝒍𝒆𝒏𝒈𝒕𝒉 

Step1: Compute the coefficient (gradient of the first term in 4.8) 

𝜶 = (𝑫𝑻(𝒙𝜹 − 𝑫𝜶)) ./𝑪         

Step 2: In each iteration update 𝜶 via Soft-block shrinkage 

𝕊(𝜶, 𝝀, 𝑵) = {
𝟎,                      𝒊𝒇    ‖𝜶𝑪‖𝟐 ≤ 𝝀

                         
𝜶𝑪 − 𝝀 ∗ 𝜶𝑪/‖𝜶𝑪‖𝟐,      𝒊𝒇 ‖𝜶𝑪‖ > 𝝀     

 

Step 3: In each iteration Check whether; 

𝑪𝒉𝒆𝒄𝒌 = 𝑪||𝜶𝒏+𝟏 + 𝟏 − 𝜶𝒏||
𝟐  −   ||𝑫( 𝜶𝒏+𝟏 − 𝜶𝒏)||

𝟐 >  𝟎 

𝑷𝑩𝒌(𝓵𝟏) = {
       𝜷 =  𝜷 ∗ 𝟎. 𝟖, 𝒂𝒏𝒅 𝑪𝟏 = 𝑪 ∗ 𝜷       𝒊𝒇 𝑪𝒉𝒆𝒄𝒌 > 𝟎

                         
 𝜷, 𝒂𝒏𝒅 𝑪            𝒊𝒇 𝑪𝒉𝒆𝒄𝒌 ≤ 𝟎     

 

 Step 4:  

Repeat step 1, 2, and 3 until convergence  

𝛂𝐧+𝟏 = 𝐏 �̃�𝐤(𝓵𝟏) (𝛂
𝐧 + 𝛃𝐧𝐃𝐓(𝐱𝛅 −𝐃𝛂𝐧))       𝟒. 𝟏𝟓 

Step 5: Compute the residual of each sub dictionary to assign test pixel to its class. 

             𝒄𝒂𝒍𝒔𝒔(𝒙) = 𝐚𝐫𝐠 𝐦𝐢𝐧 𝒓𝒋(𝒙) =arg min‖𝒙 − 𝑫𝒋𝜶𝒋‖𝟐
, 𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑪     (𝟒. 𝟔). 

Step 6: Output label(𝒙).  
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5.5. Result and Discussion 

In this section, the result of all three stages of the development presented and compared in terms 

of accuracy and computational time. The main aim of preforming such experimental design is to 

check whether our proposed schema works fine in the two mentioned aspects (accuracy and 

computational time). Indeed, we expect having a satisfactory accuracy (almost same accuracy in 

each stage) and improvement in the computational time after injecting the Steepest Descent. After 

running the algorithm for each stage of its development, we bring all the results of each stage of 

the development in table 5.5.  

Table 5.4. Performance comparison for each stage of the development 

Stage 1   Stage 2  Stage 3  

ISST Geometric 

Dictionary 

Over 

complete 

dictionary  

ISSTSD Geometric 

Dictionary 

Over 

complete 

dictionary  

JSM Geometric 

Dictionary 

Over 

complete 

dictionary  

Accuracy  93% 73% Accuracy  93% 75% Accuracy  98% 80% 

Computation 

Time 

1700 sec 12720 sec Computation 

Time 

1360 sec 12300 sec Computation 

Time 

1058sec 12000sec 

sec 

Number of 

training 

sample 

1455 1455 Number of 

training 

sample 

1455 1455 Number of 

training 

sample 

1455 1455 

Number of 

Atoms 

20 1455 Number of 

Atoms 

20 1455 Number of 

Atoms 

20 1455 

Number of 

test sample 

623 623 Number of 

test sample 

623 623 Number of 

test sample 

623 623 

Number of 

iteration 

150  Number of 

iteration 

120  Number of 

iteration 

90  

Threshold 0.1  Threshold 0.1  Threshold 0.1  

Step length 𝜷 0.8  

 
Step length 𝛽 0.8  Step length 𝛽 0.8  

 

As it can be seen, we have achieved a significant accuracy for classifying four classes, including 

corn, grass-pasture, woods, and stone-steel-towers. Furthermore, the computation time has been 

significantly improved after injecting the steepest descent. Moreover, in the last step, the block 

sparsity measurement makes it much easier to identify the relevant classes for the given dictionary. 

We expect of having almost the same accuracy in each stage that is shown in table 5.5 that the 

resulting output for geometric dictionary is much higher than the over complete dictionary. 

Moreover, we see that the computational time effectively reduced after porting the Steepest 

Descent into the Iterative Soft-Shrinkage algorithm.  In addition, we could reach the minimum 

residual in a very fast convergence manner, which firstly shows the power of Iterative Soft-

Shrinkage and secondly the efficient development of implemented soft shrinkage algorithm via 

Steepest Descent. The figure 5.6 illustrate the cost function for 250 iterations in one test sample.   
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Chapter 6 

6.1. Summary  

The main objective of this thesis is to develop a classification principle using the sparsity-based 

model that can deal with big data with the application in classification of hyperspectral imagery 

data. The motivation of this thesis comes from where that the sparsity based model is an efficient 

tool for extracting the latent structure in hyperspectral images. Recently sparse representation has 

gained a great attention in remote sensing community. In most of the literatures in remote sensing 

domain sparse coding is only utilized and the development of the numerical solution for sparsity 

based model is less considering and the main focus is on the presenting/constructing a dictionary 

that can discriminately represent different classes. Some examples of this dictionary representation 

in remote sensing domain to be mentioned are special dictionary and spatial-spectral dictionary. 

In the second approach the spatial information in the image utilized along with the spectral 

information in order to give a better presentation for the test image. Many efforts have been made 

by the researchers for developing efficient mathematical procedures to solve the optimization 

problem in sparsity based model. Hence, the focus is on the formulation of the optimization 

functional. For sparse coding, many algorithms have been developed to solve the non-smooth 

optimization problem (least squares with 𝑙1-norm). Of those all, greedy algorithm such as OMP 

can be mentioned. Other methods such as IRLS, BP have been also proposed to find the solution 

which minimize the objective functional, but it turns out that these algorithms need a lot of 

iterations and computations to converge. Therefore, a new numerical solution called Iterative 

Shrinkage Thresholding (IST) that has been motivated by Donoho-Johnston shrinkage method 

built to address the problem of dealing with high dimensionality for big data. This algorithm is a 

proximity algorithm that separates the non-differentiable part of the objective function from the 

convex part. Hence, the minimization of the convex part becomes easy with a global rate and the 

penalty term transformed to a shrinkage operation that is controlled by a threshold. Despite of the 

suite operation of shrinkage there is still obstacle for achieving a reliable convergence. The 

obstacle is the universal thresholding for the optimality condition where it cannot deal with large 

coefficients and needs many iterations to sparsity the recover information and obtain a reliable 

result. It is for this reason, in this thesis after implementing the Iterative Soft Shrinkage 

Thresholding (ISST) algorithm, we inject Steepest Descent into the algorithm that can deal with 

bias in the estimation of the coefficients via a step length in which this also lead to an accelerated 

version of the ISST. Eventually, we present a joint sparsity measurement comprising of the two 

previous steps and a new feature as optimization function that computes the norm of each sub-

dictionary in each iteration and via an optimality condition set the irrelevant dictionary to zero that 

leads to a block sparsity measurement. This approach is even able to uniquely identify the relevant 

dictionary for the given test pixel. The procedure for the construction of the dictionary is done by 

firstly extracting the corresponding pixel for each class (a prior-knowledge of the membership for 

each class). The extracted spectral feature only inferring the spectral information in the image and 

spatial information is not considered. The quest of having a well-structured dictionary encourages 

us to construct a geometric dictionary via singular value decomposition (SVD). Indeed, the SVD 
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has been implemented to be applied on each sub-dictionary in order to remove the redundant atoms 

and only present the main information in each class. Furthermore, we also consider all existing 

training samples for constructing the dictionary and this dictionary called is over complete 

dictionary which has the property of low rank matrix with a high degree of linear dependency 

between the atoms. The proposed algorithm has been applied separately on Geometric and Over-

complete dictionary to check whether the proposed Geometric dictionary works well on our 

developed algorithm. The evaluation of the proposed sparse signal recovery has been done in each 

stage of its development and the result for both over complete and geometric dictionary has been 

presented in Chapter 5 Table 5.4. The result shows that with Geometric dictionary only a few 

sample (e.g. the first five Principal components space) needed to be represented in each sub-

dictionary for the construction of the main dictionary. Hence, the amount of atoms has been 

reduced to a lower number where we could also sparsify the recovered coefficients at most. While 

in over complete dictionary case the computation time compared to the Geometric dictionary is 

significantly higher and the accuracy is very low and even the amount of sparse coefficient is much 

less than the case, using Geometric dictionary. Apart from the dictionary representation, our 

implementation of the ISST algorithm gives a significant accuracy for the classification of the four 

given classes including Corn, Grass-Pasture, woods, and Stone-Steel-Towers and the development 

of the ISST in each stage demonstrate a significant enhancement in the computational time while 

preserving the accuracy at best. The proposed efficient sparse signal recovery contains bunch of 

parameters that one needs to adjust them to get the best output. The parameters are including, 

threshold rate, number of iteration, step length of gradient, and the number of atoms representation 

(dictionary construction which is a long story itself), but when a good presentation of the feature 

dataset is provided then, by adjusting the parameters of the model, the result can be surprisingly 

reliable for even more complex dataset.  

6.2. Conclusion 

Our experiment on the four relatively close spectral classes of AVIRIS sensor in Indian Pines data 

set gives us a promising result for our proposed algorithm for the big data classification, 

particularly for hyperspectral image classification. The experimental design for each stage of the 

development present an instruction for the proper using of this package for the future researches 

and even using for solving the real world problems. Indeed, after applying the ISST and then 

ISSTSD, and eventually joint sparsity measurement we have observed computational time and the 

accuracy of each stage in a fixed adjustment of the model parameters. The accuracy demonstrates 

almost the same result for each stage of the development while the number of required iteration 

for convergence is significantly decreased. Indeed, after reducing the number of iteration following 

up injecting the Steepest Descent, in the second stage of development the amount of computation 

time significantly reduced and the accuracy preserved almost the same as before with low number 

of iteration. Furthermore, the Geometric dictionary gives us also the ability to have an effective 

computational time and accuracy also more importantly sparsify the recovered coefficients at most. 

In other words, the proposed Geometric dictionary approach contributes to the general 

performance of the proposed algorithm.  
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This thesis addresses one of the open questions in big data mining and analysis by providing an 

efficient sparse signal recovery that can be used for classification task for higher dimensional 

dataset. In addition, we provide an insight to our proposed package for a proper usage. Lastly, by 

employing a concept from linear algebra, we create a geometric dictionary that can inspire the 

researchers for the extending this work.  

 

6.3. Future Direction 

There are several potential research directions based on this thesis that can contribute to build up 

new researches. The directions are as follows;  

In Chapter 4, the dictionary construction can be extended by contributing spatial information along 

with spectral information. Indeed, the data fusion techniques can be used for construction of the 

dictionary, which has a significant impact on the performance of the proposed sparsity based 

algorithm in this thesis. One of the famous tools is the simple linear iterative clustering algorithm 

inspired by K-means algorithm in which the spatial and spectral information is captured for 

clustering.  Hence, one may apply this algorithm before constructing the dictionary that also can 

solve the problem of atoms in the dictionary. In addition, the other one may be concerned about 

removing the redundant spectral bands before constructing the dictionary. Indeed, hyperspectral 

images contains overlapping spectral region that conveys almost the same information. Hence, the 

redundant dimensions can be sufficiently remove by maximizing the variance in the dataset using 

data mining techniques such as PCA.   

This proposed algorithm in this thesis can be also examined by using the end members for both 

classification and regression task.  

The proposed optimization algorithm can perform effectively once the issues of dictionary 

representation along well adjustment of the parameters solved effectively. Hence, one may study 

the analytical solutions for the optimal choice of the model parameters.  

Lastly, due to the certain connections between sparse approximation and deep learning, the 

proposed variation regularization sparsity based model can also be extended into deep networks; 

one may expect faster inference, large learning capability, and better scalability. 
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 Appendix: 

  Intuition and output of the proposed algorithm.  
 

 

Figure 1. Presents the spectral signature of each class. As shown, the discrimination between these 

four classes are roughly represent in the first few bands.  

 

Figure 2. The left figure on the top presents the correlation between 2 sample from class 4, and in 

in below the de-correlated of the redundant sample via SVD illustrated. The figure in the right 

shows the number of PCs space for each sub-dictionary. After reduction in almost all sub-

dictionary more than 98 percentage of the variance retained. This shows the advantage of 

Geometric dictionary for better representation of the Atoms In each class that directly contributes 

to the result of proposed package. 
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Figure 3. This figure visualizes the training sample in 3D. In the left the original data from four 

classes plot in the first three spectral bands. The right figure illustrates the first three PCs space of 

training sample. It can be seen that the number of training sample is significantly reduced. 

Although, some outliers can be seen in the data that are going to have impact on the output of the 

model. Nevertheless, we do not take any step to fix this problem. Furthermore, this concept also 

can be a remark for one who wants to use PCA base analysis that consider outlier as a critical issue 

for PCA base analysis. Hence, in the case where endmembers are existence SVD can preforms 

much better. 

 

Figure 4. Depicts Over-complete and Geometric dictionary. As seen in the geometric dictionary, 

first Atoms are the reach information among all the training set. Note that in this thesis for 

Geometric dictionary we peek the first five principal components just to be in the safe side.     
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Figure 4. Shows the atoms in the top before normalization and the bottom is after normalization. 

This normalization turns the atoms to have unit 𝑙2-norm. Simply get rid of floating points that 

affect the approximation. Therefore the  

 

The figure 5. Shows a remark that is normalizing the atoms right after SVD. As demonstrated the 

Normalized atoms after SVD gives a better-discriminated information on the classes. 
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Figure 1. Demonstrate the output of the Iterative soft-Shrinkage algorithm. The left side of the 

figure depict the sparse solution for the given test pixel via our scratch implementation of iterative 

soft-shrinkage algorithm. The convergence rate is even lessen than the number of iteration. The 

classification of given test pixel failed to identify the real class. Nevertheless, there is also the case, 

one reduce the number of iteration and may obtain the right answer from this machinery.  

 

 

 

Figure 1. Demonstrate the output of the optimize version of Iterative soft-Shrinkage algorithm 

(ISSA) with steepest descent. It can be seen that within the developed version of iterative soft-

shrinkage the result remains the same but the convergence (minimization of the objective function) 

is significantly increase. In addition, the number of sparse coefficients remains the same like ISSA 

while the number of iteration set from 150 to 130 in this stage.  
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Figure1. Present the output of the proposed efficient signal recovery called Joint Sparsity 

Measurement (JSM). In the left side, the sparsity of the model remains same while an interesting 

competition starts between the two effective coefficients on the top of the graph. This leads to the 

wining of the classification task. Furthermore, the number of iteration is even increase in this stage 

to check the promise of our algorithm (fast convergence and promote a reliable accuracy). Indeed, 

the number of iteration decrease from 150 to 90.  
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