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Abstract 
 

The aim of this master thesis is to work out algorithms to solve an underdetermined inverse 
problem in the context of the German Indonesian Early Warning System. The slip distribution, 
the localization of the solution and the magnitude of the earthquake will be calculated, depending 
on the shifting of the GPS sensors. Kaczmarz method, Landweber algorithm, Richardson 
iteration, Least Squares method, Tykonov Regularization via QR factorization and Least Norm 
via Singular Value Decomposition are examined and their stability, sensibility are tested. 
Furthermore, the magnitude is computed by using the Rupture Generator. The sensitivity of the 
GPS sensors is used to restrict the system of equations, to get a proper solution. 
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Zusammenfassung 
 
Der Fokus der Masterarbeit liegt auf der Lösung eines unterbestimmten inversen Problems und 
wurde im Rahmen des GITEWS Projektes angefertigt. Berechnet wurden die Slipverteilung, die 
Lokalisation der Lösung und die Magnitude des Erdbebens in Abhängigkeit von der 
Verschiebung der GPS-Sensoren. Kaczmarz Methode, Landweber-Verfahren, Richardson-
Verfahren, Methode der kleinsten Quadrate, Tykhonov-Regularisierung mit QR-Zerlegung und 
die direkte Singulärwertzerlegung wurden auf Stabilität und Fehleranfälligkeit getestet. Des 
Weiteren wurde aus der Slipverteilung die Magnitude mittels RuptGen berechnet. Darüber hinaus 
wurde die Sensibilität der GPS-Sensoren als Nebenbedingung implementiert.  
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1 Introduction 
 
Indonesia is a region of high potential earthquakes because of the plate tectonics. It is located at 
the triple junction of the Indo-Australian Plate, Eurasian Plate and Pacific Plate. A tsunami hit the 
coast around the Indian Ocean on December 26, 2004 caused by a strong earthquake. The wave 
height was about 30 meters, 230000 people lost their lives, approximately 600000 houses were 
destroyed and 1.8 million people were left homeless.  

 
Fig 1.1: devasting effects of a tsunami [16] 

 

As a result, Germany and Indonesia have started to implement a tsunami early warning system. 
The German-Indonesian Tsunami Early Warning System (GITEWS) contains new scientific 
methods and novel technologies in comparison to previous Pacific tsunami warning systems. 
GITEWS is the first system which includes the distinctive geological situation [9].  
If an earthquake originates along the Sunda Trench, which arches from the Northwestern tip of 
Sumatra to Flores in Eastern Indonesia (subducting zone) and is located in the Indian Ocean, it 
can have devastating effects. 
An earthquake in this region can generate Tsunami waves which can reach the coast within 20 
minutes. There is only a finite amount of time for early warning. This bounding factor was the 
core of the entire system. The geological situation and the short arrival times between an 
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earthquake and the following tsunami require a new approach in early warning. The new system 
relies on 300 land-based sensors throughout this region. The warning is based on quick response, 
precise earthquake capture and analysis, which is the core of the system (see figure 1.2). 

 
Fig 1.2: technical concept of GITEWS [2] 

 

The fast determining of position, depth and magnitude is essential, for creating a prime model 
and the resulting warning. The data of GPS-stations and coast gauge are verifying the result more 
exactly.  Indonesia is affected with very short early warning times of about 20 minutes. It is 
impossible to evacuate big cities (Padang) in such a short time frame, because of the dense 
population. The population has to be trained and emergency guides have to been realized [2].  
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2 Project tasks and scientific goals 
 
The main task of the master thesis is to solve an underdetermined inverse problem. The master 
thesis can be divided into three parts. Firstly, the inversion algorithm of Manuela Schönrock has 
to be captured (QR decomposition) and improved (Tykhonov Regularization via QR 
decomposition). Furthermore, new methods can be implemented. Secondly “RuptGen” is used to 
simulate virtual earthquakes. The software tool needs the input of epicenter, magnitude and 
position and a few additional options can be set. It computes the slip distribution, the shift of the 
GPS sensors and the deformation of seabed. The Kaczmarz Method, Modified Richardson 
Iteration, Landweber Method, Tykhonov Regularization, Least Squares algorithm and Least 
Norm algorithm are chosen. The algorithms will be tested to examine their stability and 
sensibility in subjection to different noise levels. Furthermore, the magnitude will be computed 
and compared with the entered magnitude. The aim is to determine an algorithm which gives the 
best result.  
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3 Geophysical principles 

3.1 Plate Tectonics 
 
Plate tectonic assumes that the earth crust consists of seven major lithospheric plates and a few 
minor lithospheric plates. The lithosphere is the hard and rigid outer layer of the earth which 
includes the crust and the uppermost mantle. The movement of the plates is the consequence of 
the convection process.  Indonesia is one of the most seismically active regions of the earth, 
because it is located at the triple junction of the Indo-Australian Plate, Eurasian Plate and Pacific 
Plate. The Indo-Australia plate moves around 6 centimeters per year. 

There are three different types of plate boundaries.  “Transform boundaries” happen where plates 
slide or pass each other, “Divergent boundaries” arise where plates slide apart from each other. In 
Indonesia  mostly “convergent boundaries” exist. Two plates slide in the direction of each other 
and generally there accrues a subduction zone related with deep trenches [15]. 

  
Fig 3.1: Plate tectonic of Indonesia [11] 

 



3    Geophysical principles  

 

 

8 

 

3.2 Earthquake    
 
Earthquakes are caused by the abrupt release of the collected energy in the earth crust where 
seismic waves are originating.  Earthquakes with a magnitude of three or lower are imperceptible 
or faint and a magnitude higher than seven can cause high damage over large regions. The 
hypocenter of an earthquake is the location where the tense energy is first released. The epicenter 
which is above the hypocenter is the position on the earth where an earthquake originates. When 
the epicenter of a large earthquake is located offshore and the seabed is displaced sufficiently, a 
tsunami can be caused. There are three main types of faults which may cause an earthquake. 
Normal faults mainly happen in regions where the crust is being extended similar to a divergent 
boundary.  Reverse faults arise in regions with a shortened crust such as a convergent boundary. 
Strike- slip faults are steep structures where the two sides of the fault slide horizontally. 
However, the possibility exist that earthquakes are released by movement on faults which have 
elements of both dip slip and strike slip, this is known as oblique slip [18].                                
The moment magnitude scale (MMS) is applied by seismologists to calculate the dimension of 
earthquakes in relation to the released energy. The Richter scale (developed 1930) was the 
predecessor of the moment magnitude scale, developed in 1970.  An earthquake is denoted by the 
seismic moment and is given through  

 

where   is a coefficient and describes the rigidity of the medium, D is the displacement 
deflection among the opposite edge of the fault, and S is the region of the rupture along the fault. 
The magnitude of an earthquake is devoted to the seismic moment and is given through [13]. 
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3.3 Tsunami 
 
A tsunami (jap. Harbor wave) is a sequence of water waves that can reach speeds of up to 800 
km/h and is usually caused by an earthquake, volcanic eruption or a costal landslide. Tsunamis 
have a very long wavelength (deep sea) often up to hundreds of kilometers. By comparison wind 
waves only have thirty to forty meters wavelength. In addition, the wave height offshore is very 
small. When a tsunami reaches the coast, the water becomes shallow. Wave shoaling compresses 
the wave and the speed becomes less than 80 Km/h. Thus the wavelength decreases below 20 
kilometers and therefore the amplitude increases.   
 

When the crest of the tsunami wave reaches the coast, the resulting height of the water onshore in 
comparing to a reference sea level is donated “run up”. Large tsunamis can feature multiple 
waves over a time frame of hours and it is unsure which wave has the highest run up [13].   
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3.4 Sunda Arc and Sunda Trench 
 
The Sunda Arc equals to the Volcanic Arc that has created the islands of Sumatra and Java, the 
Sunda Strait and the Lesser Sunda Islands. A volcanic chain shapes the topography of these 
islands. The Arc tags an active destructive plate boundary among the East Eurasian Plate and the 
Indo-Australian Plate. The Indo- Australian Plate is subducting beneath the Eurasian Plate 
(consists of Sunda- and Burma Plate) and lies under Indonesia [21].  
 

The Sunda Trench has a length of 2600 Kilometers, a maximum depth of 7725 meters and is the 
second deepest point in the Indian Ocean [22].  

 
Fig 3.2: Sunda Trench [15] 
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4 Scenario modeling 

4.1 Subfault array 
 
The plate interface between the subducting Indian –Australian and the upper Sunda plate is 
discretized into a regular mesh of rectangular patches extending from 0 to 100km depth. The 
mesh is derived from the RUM model by Gudmundsson and Sambridge (1998) and follows the 
geometry of the plate interface. The mesh consists of  subfaults (altogether 3750 
subfaults) with average dimensions of  that simulate an area of . 
Every subfault with known geometry (width, height) and position (longitude, latitude, altitude) 
represents a rectangular fault plane [15].  
 

 
Fig 4.1: The old mesh (subfault array) consists of  and the new mesh consists of  patches [15] 
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Each subfault can be described by its orientation, particular through strike and dip angle.  

Strike is measured from north to south and represents the intersection of subfaults with the 

azimuth. Dip can be defined as the angle underneath the azimuth surface and describes their 

slope. Slip shows the motion of material and consists of dip slip and strike slip. Faults can be 

distinguished into three types related to the geometry of faulting. A dip slip fault is a fault where 

the main movement is vertical and can be classified into normal fault, reverse fault or thrust fault. 

Normal faults arise where the soil is stretching, one block of soil moves downwards relative to 

the footwall. In the case of the Sunda Trench, a thrust fault is the opposite of a normal fault with 

a dip angle of the fault less than .  A Reverse fault has the same sense of motion as a thrust 

fault and is relatively steep with an angle greater than . The surface of faulting is typically 

near vertical and the footwall moves to the left or right. An oblique slip fault is a fault which has 

a substantial component of dip slip and strike slip [15]. 

 

 
Fig 4.2: Definition of a single subfault [15] 
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4.2 Near field GPS arrays 
 
The “GPS Shield” concept for Sumatra is based on near field GPS arrays which operate in real 
time. Two or more stations are located on the Mentawai islands among the Sumatra coast and the 
trench. They build the frontal part of the array. Stations in the center of the array are very close to 
each other (approximately 10 – 20 km) and justified perpendicular to the trench.  One master 
station and various slave stations are mounted with accurate geodetic dual frequency receivers, a 
digital meteorological sensor, data processor unit, and radio modem.  The master station steadily 
obtains high rate GPS – observations at 1Hz from its slave stations and computes the coordinate 
distinctions for every single measurement in real-time. The island hosted part of the arrays is 
directly located along the shore of Sumatra and supplemented by GPS – stations. The goal is to 
measure the surface deformation of every subfault, through GPS techniques. The real time GPS 
stations with a distance of 100 – 200 km are placed along the trench [3]. 

 
Fig 4.3: GPS-shield system in the region of Indonesia. The red circles and the red circles with white edging are the 
real-time GPS stations, but the red circles with the white edging are also equipped with a broadband seismometer and 
strong motion recorder. The red diamonds are buoys [11]. 
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4.3 Rupture Generator 
 
The Rupture Generator is a tool that was developed by A.Babeyko during the GITEWS (German 

Indonesian Tsunami Early Warning System) project. The tool is used to simulate virtual 

earthquakes. The program computes the surface deformation at the Sunda trench and the static 

displacement for a variable number of GPS receivers. The mathematical forward model of 

Green’s functions is used and based on the concept of a subfault array along the subduction zone 

[1]. It defines the relationship between the earthquake source parameter and the geodetic 

measurement. In the mathematical case the linearity of these functions are essential [15]. The 

Green’s function approach is based on the standard elastic half space model OKADA [14]. Three 

components relating to the surface deformation (longitude, latitude, altitude) are precomputed for 

every single patch as a result of dip- and strike slip. The output is stored in a database of Green’s 

functions. It may be used to compute surface deformation for every single earthquake [1]. The 1D 

layered dislocation code and seismic velocities from the IASP91 model are used to compute the 

above mentioned database [15].  The plan is to implement a dislocation model which is based on 

3D Finite Element Method (FEM).  The Rupture Generator can be guided by the command line 

and by configuration files. The files of Green’s functions are stored in the subdirectory pi and 

saved as a GRD format. Another setting file is PlateInterface.pi which includes the width and 

length of each patch and the coordinates of the corner points. The coordinates of the epicenter 

and the number of ruptured patches are saved in ruptgen.log [1]. The command in the command 

line has to be the following syntax: 

 

 

It is possible to choose between a single slip value [m] (-slip) and the magnitude (-mw). 

Additionally, the epicenter can be defined by the longitude and latitude (-xy) or by a single patch 

(-ij). The i-index runs from 1 till 150 and the j-index from 1 to 25. The others must have option  

–output and can be specified in different ways. The most important ones are 
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Other output options are: 

  

  

 

The option –rake (default value is 90°, pure dip slip) differentials between dip- and strike slip 

(strike slip is 0°). The additional option -rake can be used if slip or magnitude are chosen. The 

scaling laws can be specified with –sclaw.  

The default option is 

 

and another variant is the scaling law by Wells and Coppersmith (1994). Other values can be 

defined with 

 distr (distribution model).  

The default value (distr=1) is the uniform model or the advanced model (distr=2) by Geist & 

Dmowska. The asymmetry option can vary between 0 and 1 and the default value 0.5 is 

symmetrical. The program processing depends on the entered input at the command line. If the 

magnitude   (-mw) is given the rupture dimensions will be calculated by applying the scaling law. 

Hence the slip values will be placed around the epicenter and if the slip value is entered at the 

command line, only the epicenter patch is activated. Usually earthquakes follow scaling laws but 

the options have to be applied with care, because it is not usual that one patch is surrounded by 

patches with zero meters of slip [15]. 

A possible command with a given magnitude is: 

 

or a command with a single slip value and the output (3 displacements on every GPS receiver) 

 

Another way to simulate an earthquake is to use multi single ruptures: 
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The three commands have to be written in myslip.dat and called with the following command: 

  

Another way to simulate multi rupture earthquakes is: 

 

 

4.4 Confidence interval 
 

A Confidence interval gives information about the interval estimation of a parameter, which is 
needed to display the reliability. It is an observed interval, basically different from sample to 
sample. Every GPS Sensor has a top interval boundary  and a bottom interval boundary 

because of their noise. The noisy  is a component of the following interval [17]. 

Exemplary, there are two cases presented. They are both worst case estimations. The accuracy of 
the solution vector will be shown. 

Case one  

follows the error consideration of the least squares algorithm and describes the accuracy of the 
solution. 

The noisy  can be theoretical split into a part without noise and a noisy part. 

Finally the result contains  and the attendant noise, but in the practical view it is not possible to 
split both. 
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Thus it follows 

Where is the smallest singular value of , hence   goes against infinity. Small errors in 

 induce large errors in . 

 

We consider case two 

The Tykhonov Regularization is given through  

and the Tykhonov Regularization via Singular value decomposition is hereby assigned by 

It is essential to define a rule when the algorithm does not work well, because of the confidence 
interval. 

The simplified algorithm is given by 

thus it follows 

where is the smallest singular value and  the largest singular value of . Hence  

 goes against a boundary value in addiction to the singular values and the chosen . 

Small errors in  induce a stable . 

 

 

 

 



5    Mathematical Principles  

 

 

18 

 

5 Mathematical Principles 

5.1 Underdetermined inverse problem 
 
In an underdetermined case, there are more equations than unknown and there are exists infinity 
solutions of the equation system. That means there are fewer sensors than subfaults, in this case 
six sensors and 3750 subfaults. Therefore the algorithms have to be stabilized and regularized. 
There are two kinds of problems, the forward problem (direct problem) and the inverse problem. 
The forward problem can be conceptually formulated as a transformation of data into model 
parameters. An inverse problem relates the model parameter to the observed data. Therefore, it 

contains a part of the solution of the direct problem, in this case the matrix . Finally, an inverse 
problem works back from the effect to the cause [20]. The Rupture Generator is used to simulate 

the displacements of the GPS - sensors ( ) for a given slip distribution ( ). It can be formulated 
as follows  

where 

 ,    displacement of a GPS-sensor, 

 

 , , ,  . 

  represents the slip distribution to be estimated and each element of  refers to one of 3750 

patches [15]. 

A represents the propagation matrix (Appendix A.2) and the resulting equation system leads to 

 

 . 

In following we have a noisy , for reasons of clarity and comprehensibility we write . 

Depended on the algorithm, the notation may changed. 
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5.2 QR factorization 
 
An underdetermined system of equations with  and   

can be solved by QR factorization of the transposed system 

where  

,  . 

The QR factorization is usually calculated by the Gram Schmidt algorithm, because of the small 
rounding errors [5]. 

The reduced  factorization is given through 

 ,  and  thus it follows 
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5.3 Singular Value decomposition 
 
Assume that   with , therefore the matrix  can be factored as 

where 

are the left singular values of , 

are the singular values of , 

 are the right singular values of  . 

Based on the underdetermined case,  can be reduced to   

and  can be reduced to  .  

Thus the truncated SVD decomposition is given by 

 . 

Hence  has a smaller size, thus the computation is faster and less memory is required 
[6]. 
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5.4 Direct solver 

5.4.1 Least norm solution via Singular Value Decomposition 

 
Assume the linear equation 

 , 

 

(1.1) 

where    and   . 

The matrix  can be factored as 

 , (1.2) 

where   and plugged into (6.11) 

leads to 

  . (1.3) 

After multiplying by  the rewritten equation is given by 

  . (1.4) 

Therefore, the forward substitution   reduces system to  

  , (1.5) 

  has to be inverted  and  leads to 

 . (1.6) 

The backward substitution leads to  

  . (1.7) 

Therefore, it follows 

 . (1.8) 

The pseudo inverse or Moore-Penrose inverse is given by  

  [8]. (1.9) 
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5.4.2 Least norm solution via QR factorization  

 

Consider the linear equation 

 , (2.1) 

where    and   . 

The transposition of the forward algorithm yields to 

  , (2.2) 

plugged   in the above equation it follows 

  . (2.3) 

Therefore, the reduced QR decomposition of the transposed system is given by 

  . (2.4) 

The forward substitution is given by 

 , (2.5) 

in order that 

  . (2.6) 

Therefore, it follows 

 . (2.7) 

The backward substitution is leading to 

 . (2.8) 

Hence the solution yields to 

  [8]. 

 

 

 

(2.9) 
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5.4.3 Least squares 

 

The aim is to find an approximate solution that minimizes 

  , 

 

(3.1) 

where 

 ,  and   . 

To minimize we take the first derivative respect to  and set  

  (3.2) 

to zero [7]. 

Therefore, the normal equation is leading to 

  . (3.3) 

Hence the approximate solution is hereby assigned by 

  . (3.4) 

The Least norm solution via QR factorization is given through 

  . (3.5) 

 

5.4.4  Tikhonov Regularization 

 

Tikhonov regularization is the most commonly used algorithm of regularization of ill posed 
problems and is named for Andrey Nikolayevich Tikhonov, a Russian mathematician. 

We have the following problem 

  . (4.1) 

The standard way to solve this problem is known as ordinary least squares and seeks to minimize 

  . (4.2) 
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where  is the Euclidian norm. This can be done for overdetermined and underdetermined 
systems of equations. To get a better solution the regularization term  

 
 

(4.3) 

has to be is included, 

thus it follows 

 
 

(4.4) 

In many cases the matrix  is choosen as the identity matrix and has to 

be larger than zero [23]. 

The first derivative is given of the form  

  (4.5) 

in order that 

  (4.6) 

The approximate minimizer of the weighted sum objective is 

  . (4.7) 

A solution with a smaller norm will be expected and the regularization improves the condition of 
the problem. Related to the Bayes' theorem, the Tikhonov matrix is then  . 

An advanced method is the generalized Tikhonov regularization 

  , (4.8) 

where P is the inverse covariance matrix of  [23]. 
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5.4.4.1 Computing Tikhonov regularization using SVD decomposition 
 

The Tikhonov regularization by using the SVD decomposition is given through 

  , (4.9) 

remark that 

  . (4.10) 

 and  can be factorized to 

  , (4.11) 

multiplying with leads to 

  . (4.12) 

Hence the solution formula is given through 

  . (4.13) 

 

5.4.4.2 Computing Tikhonov regularization using QR factorization 
 

The Tykonov regularization by using the QR factorization is given through 

  , (4.14) 

 and  can be factorized to 

  . (4.15) 

Multiplying with  it yields to 

  . (4.16) 

Adapted from forward and backward substitution the solution formula is given by 

 . (4.17) 
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5.4.4.3 L-curve criterion  
 

The optimal regularization parameter  can be determined graphically. The basis is a 2d plot for a 
valid regularization parameter. This is the way to show the dependence between  and 

 . The output of least squares is impaired by rounding errors and data errors. Hence, 
regularization is useful. Regularization is damping these errors but if the regularization is too 

high, they do not fit the given data, thus  is too large. Therefore, a small regularization 
involving a good fit of the data is useful, but in this case the data error is larger. 

 
5.5 Iterative solver 

5.5.1 Modified Richardson Iteration 

 

The Richardson Iteration was suggested by Lewis Richardson in 1910 and is almost similar to 
Gaus-Seidel- and Jacobi method [19].  

We have the following problem 

  . 

 

(5.1) 

The standard way to solve this is to minimize the following 

  , 

 

(5.2) 

where  ,   . 

Therefore, the normal equation is given through 

  . (5.3) 

 The fixed point iteration is 

  , (5.4) 

in order that the Richardson iteration is defined by 

  . (5.5) 
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It is necessary to use the relaxation parameter , which improves the convergence and weights 

the residuum [19]. The parameter  has to be between   and the optimal choice is   

 . 

Hence, the Modified Richardson Iteration is given through               

  . (5.6) 

The method converges if  

 . 

5.5.1.1 Modified Richardson Iteration using Singular Value Decomposition 
 

A has to be replaced by  hence the iterative algorithm is given through 

  . 

 

(5.7) 

Therefore, the solution formula is given by 

  . 

 

(5.8) 

5.5.1.2 Modified Richardson Iteration using QR factorization 
 

A has to be replaced by , hence the iterative algorithm is given through 

 
 . 

 

(5.9) 

The simplified algorithm is given by  

  [19]. 

 

(5.10) 
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5.5.2 Kazcmarz’s Method 

 

The aim is to minimize 

  

 

(6.1) 

where  ,   . 

The normal equation is given by 

  . (6.2) 

The equivalent linear fixed point iteration is hereby assigned  

 . (6.3) 

We have only an approximation  of the exact data if the condition 

  

is complied. 

Hence the Kaczmarz's sequence is 

  . 

 

(6.4) 

It is sensible to use a relaxation parameter  in combination with a new stopping rule [10] 

 , (6.5) 

where 

  . (6.6) 

The choice of  is given by 

 

A modification of the Kaczmarz’s algorithm is a blockwise Kaczmarz’s method of the form 

  . 

 

(6.7) 
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The aim is to solve the equation separately for  . 

 
The parameter  is an appropriate chosen constant. 
Each sensor has a confidence interval  (for ) and C represents  . Therefore we can 
choose one confidence interval or we can choose three different confidence intervals for . 
The iteration terminates if ,  and  becomes zero. 
 

5.5.2.1 Computing Kaczmarz's method using Singular value decomposition 
 

After replacing  the equation leads to 

 . 

 

(6.8) 

Hence the simplified algorithm is 

  . 

 

(6.9) 

5.5.2.2 Computing Kaczmarz's method using QR factorization 
 

By replacing  we get the reformulated algorithm 

  (6.10) 

therefore it follows 

  . 

 

(6.11) 
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6 Results 

6.1  norm estimation 
 

The Euclidian norm ( ) is given through 

 . 

In this case the Euclidian distance between the original slip distribution  (given by RuptGen, 
see figure 6.1) and  (computed by an algorithm) is given by 
 

  

 

  
Fig 6.1: slip distribution created with RuptGen, MW=8.5, XY=100 -1 
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The slip distribution of every algorithm is computed 1000 times (with  + random noise ) and 
averaged, because one computation is not representative.  

The Tykhonov Regularization provides the best result, because of their small  (see figure 
6.1). The Richardson Iteration and Landweber algorithm are decent, because their  is 
larger. In the image are a sense of linearity between  and the noise except the Kaczmarz 
method. There are a lot swings in the curve. All iterative algorithms have a new stopping rule 
(comparison with formula 6.6). The sense of the new stopping rule is that the algorithm interrupts 
before the solution becomes worse. 

 

 
Fig 6.2: norm in addiction to the noise level 
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The Tykhonov Regularization is the most stable algorithm (in comparison to 6.1). It is a direct 
method, therefore no stopping rule is required. The regularization parameter  makes the 
algorithm stable and less sensitive. Figure 6.2 shows differences between a noiseless slip 
distribution and a slip distribution with noise=5cm. The right image in Figure 6.2 shows a bit 
sprays above and on the left side of the earthquake in comparison with the left image. The 
maximal amplitude of both objects is nearly the same.  

 
Fig 6.3: slip distribution, Tykhonov Regularization, noise level = 0cm (left), noise level = 5cm (right) 
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The Kaczmarz Method (see figure 6.3) is visual mostly the same in comparison to Tykhonov 
Regularization. The maximal amplitude is lower by comparison with  (see figure 6.1). 
Furthermore, the maximal amplitude decreases appreciable, however, the Tykhonov 
Regularization (see figure 6.2) is stable and the maximal amplitude only decreases a little. 

 
Fig 6.4: slip distribution, Karzmarz Method, noise level = 0cm (left), noise level = 5cm (right) 
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The Modified Richardson Iteration is a stable algorithm with the fewest spray of all algorithms. 
The left part of figure 6.4 shows the noiseless solution. The maximal amplitude is very close to  

 (see figure 6.1) but the maximal amplitude decreases too fast (right part of Figure 6.4). The 
algorithm is less stable than the Tykhonov Regularization (see figure 6.2). 

 

 
Fig. 6.5: slip distribution, Modified Richardson Iteration, noise level = 0cm (left), noise level = 5cm (right) 
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The Landweber Method (see figure 6.5) is an algorithm with a lesser maximal amplitude but the 
method is stable, because the maximal amplitude changes less. The effect of spray is similar to 
Tykhonov and Kaczmarz.  

 

 
Fig. 6.6: slip distribution, Landweber Method, noise level = 0cm (left), noise level = 5cm (right) 
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The SVD method and LSQ Method give much worse results. The effect of noise makes both 
algorithms very sensitive. Therefore, the slip values are increasing very fast and so the error 
vector increases too. There is no sense to use the algorithms to solve such problems, because they 
are not stable (image).  

 
Fig. 6.7: , LSQ, SVD 
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The least norm solution via SVD decomposition (see figure 6.6) is very unstable, because the 
influence of noise changes this result dramtically. It is not possible to locate the earthquake. The 
earthquake displaces to the north of the right part of the image (see figure 6.6). In addition, the 
maximal amplitude increases. Therefore, it is not possible to say something true about the 
earthquake. 

 
Fig. 6.8: slip distribution, SVD Method, noise level = 0cm (left), noise level = 5cm (right) 
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The result which is given trough LSQ is the same as SVD, because the worse slip values und 
maximal amplitude are mostly the same. The algorithm is also not stable and to sensitive. It 
makes no sense to use the method in that case. 

 

 
Fig. 6.9: slip distribution, LSQ Method, Left: noise level 0cm, right: noise level 5cm 
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6.2 Amplitude comparison 
 

The largest slip value is an indicator how powerful an earthquake can be. It is essential to 
calculate the amplitude correctly.  The Tykhonov Regularization has the best result, because 
differences between  are very small. The algorithm is stable in comparison 
with the other three algorithms.  The SVD and LSQ method are not part of the comparison, 
because their result is too bad. If there is noise till 1cm, the Richardson Iteration supplies a better 
result, but the algorithm is not stable and too sensitive (see figure 6.8). 

 

 
Fig. 6.10: amplitude comparison 
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6.3 Accuracy of the earthquake localization   
 

The localization of an earthquake is another important factor to determine the accuracy of an 
algorithm. The distance between the largest value of the calculated slip distribution and given slip 
distribution (RuptGen) can be computed with the Haversine formula 

d  

The image (see figure 6.9) shows that the Richardson Iteration yields to the best result, because 
the algorithm has the closest distance to . If there is noise included the Richardson iteration, 
Landweber method, Kaczmarz Method and Richardson Regularization supply the same result in 
addition to different noise levels. 

 
Fig 6.11: distance between the maximal slip values from the original slip distribution and computed slip 
distribution,x-axis shows the noise[cm] and y-axis shows the distance 
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6.4 Magnitude determination with RuptGen 
 
Firstly, the slip distribution has to be computed (for example: Tykhonov Regularization).  
Afterwards a command has to be executed for every single subfault and stored in a file  

 . 

So we have 3750 commands as subfaults and RuptGen can be started.  
 

The computed magnitude is stored in ruptgen.log and can be compared with the entered 
magnitude ( )  .  represents the computed magnitude by RuptGen with the 
slip distribution of the used algorithms. 

 
Figure 6.12: magnitude comparison: Tykhonov Regularization, Kaczmarz Method, SVD 
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The Tykhonov Regularization (see figure 7.1) provides the best result, because  

 . 

However, the SVD Method (see figure 7.1) and LSQ Method (see figure 7.2) give the worst 
result, because                                                            

 . 

The Landweber Method is not suitable from a noise larger than 10cm, because the magnitude 
increases too fast. The scope is too large and the earthquake becomes underestimated, hence the 
algorithm is not suitable. The Kaczmarz Method and Modified Richardson Iteration are both 
decent algorithms.  

 
Fig. 6.13: magnitude comparison, Modified Richardson Iteration, Landweber, Least Squares 
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6.5 Sensor sensitivity as an auxiliary condition by the example of 
Tykhonov Regularization 

 

It is important to know in which area a sensor can reconstruct (see figure 8.1). This information 
gives the opportunity to restrict the patches, which could save calculation time.  The regions 
where the reconstruction is possible can be visualized. The six sensors overlay the most parts of 
the area. In figure 6.12 are shown six sensors and their displacement in . The displacements 
are calculated with RuptGen. The following command  

 

has to be executed on each subfault, but the i-index and j-index changes after every execution. 

The resultant displacements of each sensor are stored in a file and visualized in figure 6.12.  

 

 
Fig. 6.14: sensitivity of 6 GPS sensors with x y and z, left sensors 1 3 5, right sensors 2 4 6, logarithmic scale, slip=1 
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The six sensors overlay a special region (see figure 8.2). The red regions are areas where the 
sensors are able to reconstruct the slip distribution. The blue regions are areas where none 
reconstruction is possible because of fewer sensors. One way is to add new sensors to overlay the 
whole area. The red color becomes murkier, because of the overlapping sensors. In such areas the 
reconstruction is more stable than in areas with a brighter red color.  

 
Fig. 6.15: overlaid area by six GPS sensors, logarithmic scale, represents matrix B 
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The matrix B represents the area which is visualized in figure 6.13. The aim is to eliminate the 
regions where no reconstruction is possible (blue regions). On the basis of equation 4.6 the matrix 
A can be restricted as follows and the equation leads to 

B  

Hence the above system of equations becomes smaller, less time and equations are required. The 
resulting slip distribution (see figure 6.14) is equal to figure 6.2. Thus it makes sense to restrict 
the matrix A. 

 
Fig. 6.16: slip distribution, Tykhonov Regularization with auxiliary condition (matrix B), noise level 0cm, 

 

 

 

 

 

 



6    Results  

 

 

46 

 

6.6 Auxiliary ellipse around the epicenter by the example of 
Tykhonov Regularization 

 
The ellipse around the epicenter represents the area in which the tsunami genic fault can be 
expected for an equation of the given epicenter and magnitude. The patches outside the ellipse 
become penalized. Therefore the spray around the main faults can be reduced [1]. The improved 
Tykhonov Regularization (similar to 5.4.4, only B added) is given by 

 . 

The solution formula is given through 

 . 

 
Fig. 6.17: left ellipse, centre: Tykhonov Regularization with noise level 20cm, right: Tykhonov Regularization in 

combination with ellipse  

 

 



7    Conclusion and Outlook  

 

 

47 

 

7 Conclusion and Outlook 
 
There are many algorithms which could be used to solve the problem of earthquake parameter 
reconstruction, but only the Tykhonov Regularization is stable and gives acceptable results. 
These kinds of algorithms depend on the situation, if the system is underdetermined, over 
determined or the variables and equations are equal. In another situation the same method can 
give a better result or a worse result. The algorithm has to be chosen with care and must depend 
on the issue.  

This thesis differs from Manuella Schönrocks thesis, because only six sensors are available as 
opposed to 61 sensors. The aim was to implement new algorithms and auxiliary conditions. The 
improvements in comparing with Manuelle Schönrocks thesis is that new auxiliary conditions are 
created (see chapter 6.5). Furthermore this thesis examined the accuracy of localization of an 
earthquake and determines the magnitude. 
 

In the future it could be possible to combine seismic und GPS-inversion to locate the earthquake 
more exactly and get the slip distribution with more accuracy. In addition, adding more sensors 
can overlay the whole area and earthquakes could be reconstructed at each position.  
 

In the field of early warning there are pioneering methods under development. The Scatterometry 
and Reflectometry allow the detection of reflected signals (electromagnetic waves), because of 
the high reflectivity signals on water, ice and snow. The past experience with special GPS 
receivers in planes and balloons told us that those measurements of the sea level can obtain an 
accuracy of up to 5cm.  
 

Another possibility is the tsunami detection from space using GNSS Reflectometry. The GNSS-R 
uses given signals from navigation satellites (Global Navigation Satellite System), just like 
Radar. The Radar signals are reflecting from the sea surface and can be used to calculate the 
height of the reflecting surface [4]. 
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A     Appendix 
A.1 Comparison of slip distribution 
A.1.1 Tykhonov Regularization 

 
Fig. A.1: slip distribution, Tykhonov Regularization, noise level = 1cm (left), noise level = 2cm (right) 
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Fig A.2: slip distribution, Tykhonov Regularization, noise level = 3cm (left), noise level = 4cm (right) 
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Fig. A.3: slip distribution, Tykhonov Regularization, noise level = 10cm (left), noise level = 20cm (right) 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

51 

 

A.1.2 Kaczmarz Method 

 

 
Fig. A.4: slip distribution, Kaczmarz Method, noise level = 1cm (left), noise level = 2cm (right) 
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Fig. A.5: slip distribution, Kaczmarz Method, noise level = 3cm (left), noise level = 4cm (right) 
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Fig. A.6: slip distribution, Kaczmarz Method, noise level = 10cm (left), noise level = 20cm (right) 
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A.1.3 Least norm solution via Singular Value Decomposition 

 
Fig. A.7: slip distribution, Least Norm Solution via Singular Value Decomposition, noise level = 1cm (left), noise 

level = 2cm (right) 
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Fig. A.8: slip distribution, Least Norm Solution via Singular Value Decomposition, noise level = 3cm (left), noise 

level = 4cm (right) 
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Fig. A.9: slip distribution, Least Norm Solution via Singular Value Decomposition, noise level = 10cm (left), noise 

level = 20cm (right) 
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A.1.4 Least squares via QR factorization 
 

 
Fig. A.10: slip distribution, Least Squares via QR factorization, noise level = 1cm (left), noise level = 2cm (right) 
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Fig. A.11: slip distribution, Least Squares via QR factorization, noise level = 3cm (left), noise level = 4cm (right) 
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Fig. A.12: slip distribution, Least Squares via QR factorization, noise level = 10cm (left), noise level = 20cm (right) 
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A.1.5 Modified Richardson Iteration 
 

 
Fig. A.13: slip distribution, Modified Richardson Iteration, noise level = 1cm (left), noise level = 2cm (right) 
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Fig. A.14: slip distribution, Modified Richardson Iteration, noise level = 3cm (left), noise level = 4cm (right) 
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Fig. A.15: slip distribution, Modified Richardson Iteration, noise level = 10cm (left), noise level = 20cm (right) 
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A.1.6 Landweber Method 

 
Fig. A.16: slip distribution, Landweber Method, noise level = 1cm (left), noise level = 2cm (right) 
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Fig. A.17: slip distribution, Landweber Method, noise level = 3cm (left), noise level = 4cm (right) 
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Fig. A.18: slip distribution, Landweber Method, noise level = 10cm (left), noise level = 20cm (right) 
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A.2 Source code (creation of matrix Astrike and Adip) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.21 creation of matrix A (strike slip) 

 

 

 

 

 

 

 

 

 

 

clear all; 
clc; 
Adx = zeros(6,25*150); 
Ady=Adx;Adz=Adx; 
slip1=1; 
  
 for j=1:1:150 
 
     for i=1:1:25 
        

   unix(['ruptgen.x -slip ',int2str(slip1),'  -ij ',int2str(j),'     
',int2str(i),' -rake 0 -output gps stations.dat']); 

        F=load('stations.dat.out'); 
        n = (j-1)*25+i; 
        [j i n] 
        Adx(:,n,slip1)=F(:,3); 
        Ady(:,n,slip1)=F(:,4); 
        Adz(:,n,slip1)=F(:,5); 
         
     end 
 
 end 
 
save Astrike.mat Adx Ady Adz 
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Figure A.22 creation of matrix A (dip slip) 

 

 

 

 

 

 

 

 

 

 

 

 

clear all; 
clc; 
Adx = zeros(6,25*150); 
Ady=Adx;Adz=Adx; 
slip1=1; 
  
 for j=1:1:150 
 
     for i=1:1:25 
        

   unix(['ruptgen.x -slip ',int2str(slip1),'  -ij ',int2str(j),'     
',int2str(i),' -rake 90 -output gps stations.dat']); 

        F=load('stations.dat.out'); 
        n = (j-1)*25+i; 
        [j i n] 
        Adx(:,n,slip1)=F(:,3); 
        Ady(:,n,slip1)=F(:,4); 
        Adz(:,n,slip1)=F(:,5); 
         
     end 
 end 
 
save Adip.mat Adx Ady Adz 
load Adip.mat 
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A.3 Source code algorithms 
 
A.3.1 Least Norm via Singular Value Decomposition 
 
 
 
 
 
 
 
A.3.2 Least squares via QR factorization 
 
 
 
 
 
 
 
A.3.3 Tykhonov Regularization via QR factorization 
 
 
 
 
 

 

 

 

 

 

 

[U S V]=svd(A(1:18,:)); SVD decomposition 
S1(1:18,1:18)=S(1:18,1:18);                                                
V1(1:7500,1:Z)=V(1:7500,1:18);       
 
SVD=abs(V1*inv(S1)*U(1:Z,1:Z)'*Y(1,1:Z)');  
    
x=sqrt(SVD(1:3750,1).^2+SVD(3751:7500).^2); solution 

Q R]=qr(A(1:18,:)'); %QR factorization                                     
QQ=Q(:,1:18);                                                            
RR=R(1:18,1:18); 
 
LSQ=abs(QQ*inv(RR*RR')*(RR*Y')); 
 
x=sqrt(LSQ(1:3750,1).^2+LSQ(3751:7500).^2); solution 

Q R]=qr(A(1:18,:)'); %QR factorization                                     
QQ=Q(:,1:18);                                                            
RR=R(1:18,1:18); 
     
I=eye(18); 
L=0.84; 
     
TRQR=abs(((RR*Y(1,1:18)')\(RR*RR'+L*I))*QQ'); 
TRQR=TRQR'; 
 
x=sqrt(TRQR(1:3750,1).^2+TRQR(3751:7500).^2); 
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A.3.4 Kaczmarz Method 
 

 

 

 

 

 

 

 

 

 
 
 
A.3.5 Modified Richardson Iteration 
 
 
 
 
 

 

 

 

 

 

 

 

L=[1 1 1]*24; 
k=0; 
x0=zeros(7500,1); 
x=x0; 
tt=1; 
 
 for j=1:1:33 
    for i=1:1:3        
        if norm(A(k+1:6*i,:)*x0-Y(1,k+1:6*i)')>((tt*EF1(i,1))) 

Kms=(x0-(L(i)*A(k+1:6*i,:)'*(A(k+1:6*i,:)*x0-    Y(1,k+1:6*i)'))); 
          x0=Kms; 
        end 
     k=6*i; 
    end 
  slip(:,f)=sqrt(Kms(1:3750,1).^2+Kms(3751:7500).^2); 
  k=0; 
 end 
 
 

AA=A(1:Z,:)'*A(1:Z,:); 
YY=A(1:Z,:)'*Y(1,1:Z)'; 
I=eye(size(AA)); 
ew=(eig(A'*A)); 
gamma=2/((max((ew)))+min((ew))); 
m=I-gamma*AA; 
n=gamma*YY; 
 
   for i=1:1:100 
        if norm(A(1:Z,:)*x0-Y(1,1:Z)')>EFtest 
           MRI=abs((m*x0+n)); 
        end 
             
     x0=MRI; 
   end 
       
x=sqrt(MRI(1:3750,1).^2+MRI(3751:7500).^2); 
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A.3.6 Landweber Iteration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I=eye(7500); 
alpha=2/(max(sum(abs(A')))); 
     
LW=zeros(7500,1); 
x0=zeros(7500,1); 
 
 for i=1:1:100 
 
    if norm(A(1:Z,:)*x0-Y(1,1:Z)')>EFtest 
       LW=x0+alpha*A(1:18,:)'*(Y(1,1:18)'-A(1:18,:)*x0); 
       x0=LW; 
    end 
 
 end 
 
x=sqrt(LW(1:3750,1).^2+LW(3751:7500).^2); 
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