Charakterisierung der
Beanspruchungsmechanismen scherempfindlicher
Stoffsysteme im Rührprozess

Masterthesis

Verfasser: Anna-Lena Kraft

Vorgelegt am: 30.06.2012

Betreuer: Prof. Dr. Peter Meurer
Dr.-Ing. Achim Knoch

Institut: Deutsches Institut für Lebensmitteltechnik e.V.

Abstract

Mixing and agitation are important process engineering tasks for food industry. Different substances have to be mixed by using high mechanical energy. There are some special problems with big and shear sensitive particles like diced fruits and vegetables as part of the recipe, because they could be damaged. The integrity of these particles is important for the food quality. It is possible that the particles are damaged because of shearing, interactions between particles, flow field or impacts because of the agitators. Up to date there are only experiments with emulsions systems, flakes systems and plant cells. This means behavior of small particles in stirring process. It is not possible to transfer these results to big shear sensitive particles because mechanisms of damaging are different. This master thesis describes the influence of the viscosity of the continuous phase, strength of the particles and percentage of particles on the stress of big shear sensitive particles. Cubes and balls of agar were used as reference product. The damaged particles were evaluated optically. Different stirrer types were tested in a vessel with a volume of five liter. If the different agitators had the same speed, the paddle agitator with four blades and big angular shape is the one with the highest shear rate. The shear rate of the paddle agitator with two blades (Ø 106 mm) and the anchor agitator is less intensive. A little bit lower is the shear rate of the paddle agitators with four blades (angular, oval and oval with 45 degree angle). The lowest shear rate had the paddle agitator with two blades (Ø 81 mm) and the propeller agitator. Increasing the percentage of particles the integrity of the particles also increases. With decrease in the strength of the particles the integrity of the particles decreases. By increasing the viscosity of the continuous phase the amount of damaged particles has been reduced. The results can be used to configure a stirring process in mixing recipes with big shear sensitive particles, which means, that process parameters can be defined to avoid any damaging of these particles.
Inhaltsverzeichnis

1 Einleitung ... 1

2 Zielsetzung ... 3

3 Stand der Wissenschaft und Technik .. 4

3.1 Beanspruchungsmechanismen im Rührprozess ... 4

3.1.1 Kräfte auf Partikel im Fluid .. 4

3.1.2 Bedeutung des Strömungsfeldes ... 4

3.1.3 Schub- und Dehnspannungen .. 8

3.1.4 Viskosität der kontinuierlichen Phase .. 10

3.1.5 Stoßbeanspruchung im Rührprozess .. 11

3.2 Scherbeanspruchung ... 12

3.2.1 Scherbeanspruchung bei Flüssig-Flüssig-Systemen .. 12

3.2.2 Scherbeanspruchung in biologischen Systemen ... 13

3.2.3 Scherbeanspruchung bei Fest-Flüssig-Systemen .. 15

3.3 Messung der Partikelgrößenverteilung ... 17

4 Material und Methoden .. 18

4.1 Material .. 18

4.1.1 Agar ... 19

4.1.2 Rührbehälter und Rührertypen ... 19

4.1.3 Reynoldszahlen ... 21

4.1.4 Bewehrung .. 23

4.2 Methoden ... 23

4.2.1 Agarwürfel .. 23

4.2.2 Agarkugeln ... 24

4.2.3 Textur der Agarwürfel .. 26

4.2.4 Rühren Hauptversuche .. 26

4.2.5 Einfluss der Blattgeometrie .. 28

4.2.6 Kritische Schubspannung ... 29

4.2.7 Viskosität der kontinuierlichen Phase ... 29

4.2.8 Optische Auswertung der Agarwürfel ... 30

5 Ergebnisse .. 33
5.1 Textur der Agarwürfel ... 33
5.2 Charakterisierung der Rührorgane bei gleichen Bedingungen 34
 5.2.1 Einfluss der Blattgeometrie .. 43
 5.2.2 Kritische Schubspannung ... 48
5.3 Unterschiedliche Anteile an Agarwürfeln ... 51
5.4 Unterschiedliche Festigkeit der Agarwürfel .. 54
5.5 Erhöhte Viskosität der kontinuierlichen Phase 59
6 Schlussfolgerung und Ausblick .. 64
7 Zusammenfassung .. 66
Verzeichnis der verwendeten Formelzeichen und Abkürzungen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Einheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>mm</td>
<td>Behälterdurchmesser</td>
</tr>
<tr>
<td>d</td>
<td>mm</td>
<td>Rührerdurchmesser</td>
</tr>
<tr>
<td>H</td>
<td>mm</td>
<td>Füllhöhe</td>
</tr>
<tr>
<td>h</td>
<td>mm</td>
<td>Rührereinbauhöhe (Rührermitte)</td>
</tr>
<tr>
<td>h_B</td>
<td>mm</td>
<td>Rührerblatthöhe</td>
</tr>
<tr>
<td>H_{Su}</td>
<td>mm</td>
<td>Bodenabstand des Stromstörers</td>
</tr>
<tr>
<td>n</td>
<td>s^{-1}</td>
<td>Drehzahl</td>
</tr>
<tr>
<td>l_B</td>
<td>mm</td>
<td>Rührerblattlänge</td>
</tr>
<tr>
<td>t</td>
<td>min</td>
<td>Zeit</td>
</tr>
<tr>
<td>w'</td>
<td>m/s</td>
<td>turbulente Schwankungsgeschwindigkeit</td>
</tr>
<tr>
<td>α</td>
<td>°</td>
<td>Anstellwinkel der Rührschaufeln</td>
</tr>
<tr>
<td>η</td>
<td>Pas</td>
<td>dynamische Viskosität</td>
</tr>
<tr>
<td>ρ</td>
<td>kg/m³</td>
<td>Dichte</td>
</tr>
<tr>
<td>τ</td>
<td>N/m²</td>
<td>Schubspannung</td>
</tr>
<tr>
<td>ν</td>
<td>m²/s</td>
<td>kinematische Viskosität</td>
</tr>
<tr>
<td>˙y</td>
<td>s^{-1}</td>
<td>Schergeschwindigkeit</td>
</tr>
</tbody>
</table>
1 Einleitung

Bis heute ist nicht bekannt, wodurch die grobstückigen Partikel genau beansprucht werden. Hierbei kann eine durch das Strömungsfeld induzierte Scherbeanspruchung genauso verantwortlich sein, wie die Beanspruchung durch Partikel-Partikel-Zusammenstöße oder die Schädigung durch das Rührorgan. Inwieweit die Viskosität der kontinuierlichen Phase einen Einfluss auf die Schädigung der Partikel hat, ist derzeit weiterhin nicht bekannt. Bislang beziehen sich die wissenschaftlichen Arbeiten nur auf die Beanspruchung von sehr kleinen Partikeln im Rührbehälter. Dabei geht es um die Tropfenbeanspruchung von Emulsionssystemen oder im Bereich der Bioverfahrenstechnik um die Schädigung von Zellen und Zellagglomeraten.

In der Praxis werden die optimalen Betriebsparameter zur Herstellung von Gemischen mit grobstückigen, scherempfindlichen Komponenten (Frucht- und Gemüsezubereitungen) meist über ein
Einleitung

2 Zielsetzung

Im Rahmen dieser Arbeit wird zunächst der Einfluss unterschiedlicher Parameter des Rührprozesses auf die Beanspruchung grobstückiger Partikel in einer kontinuierlichen, flüssigen Phase untersucht. Alle Versuche werden mit grobstückigen Partikeln aus Agar als Referenzprodukt durchgeführt, um eine Beeinflussung der Messergebnisse durch saisonale Qualitätsschwankungen der Naturprodukte ausschließen zu können.

3 Stand der Wissenschaft und Technik

Als Rühren wird ein Verfahren bezeichnet, bei dem entweder Flüssigkeiten miteinander gemischt werden oder aber feste bzw. gasförmige Stoffe in Flüssigkeiten dispergiert oder gelöst werden. Die Komponenten werden beim Rühren durch Strömungs kräfte vermischt, die in der Rührströmung entstehen. Diese Rührströmung entsteht durch das rotierende Rührorgan (Hemming und Wagner 2008).

3.1 Beanspruchungsmechanismen im Rührprozess

3.1.1 Kräfte auf Partikel im Fluid

3.1.2 Bedeutung des Strömungsfeldes

Die Schubspannung τ ist nach dem Reynoldschen Spannungsansatz gemäß

$$\tau = \rho \cdot \overline{w'}^2$$

In Abb. 2 sind die Effektivwerte der turbulenten Schwankungsgeschwindigkeit in Abhängigkeit von dem Radius und der Höhe des Behälters dargestellt.
Abb. 3 verdeutlicht das Angreifen der turbulenten Schwankungsgeschwindigkeit an zwei gegenüberliegenden Punkten eines Tropfens.

Die Reynoldszahl

\[Re = \frac{n \cdot d^2}{v} = \frac{n \cdot d^2 \cdot \rho}{\eta}\]

beschreibt den Strömungszustand im Rührbehälter und unterscheidet allgemein zwischen den folgenden drei Strömungsbereichen:

- \(Re < 10\) laminarer Strömungsbereich
- \(10 < Re < 10^4\) Übergangsbereich
- \(Re > 10^4\) turbulenter Strömungsbereich (Biedermann 1994).

Die im Rührbehälter entstehende dreidimensionale Strömung wurde zwar teilweise analytisch behandelt, dennoch sind die Ergebnisse nicht auf grobe, disperse Phasen übertragbar. Bislang wird zu deren Beschreibung die statische Turbulenztheorie angewendet. Es ist allerdings anzu merken, dass der Einfluss des Volumenanteils auf die sich einstellende Partikelgröße noch nicht befriedigend geklärt ist (Mersmann, Grossmann 1978).

3.1.3 Schub- und Dehnspannungen

Der physikalische Hintergrund der Beanspruchung im Rührprozess sind die Scherkräfte, die über das Rührorgan und die induzierte Strömung im Rührprozess eingetragen werden. Das Prinzip der Scherbeanspruchung im Rührbehälter wird durch Abb. 5 verdeutlicht. Hierbei erfährt das Volumenelement eine Schubspannung τ.
Die untere Platte der Abbildung ist unbeweglich; die obere Platte wird durch die Kraft F mit der Geschwindigkeit w verschoben. Die Kraft bezogen auf die Fläche A der oberen Platte wird als Schubspannung τ bezeichnet. Durch die Verschiebung der Platte kommt es zu einem Geschwindigkeitsgefälle innerhalb des Volumenelementes. Die Geschwindigkeit der Flüssigkeit an der unteren Platte beträgt aufgrund der Haftbedingung $w = 0 \, \text{m/s}$. An der oberen Platte ist die Geschwindigkeit der Flüssigkeit gleich der Geschwindigkeit der bewegten Platte. Der Geschwindigkeitsgradient wird als Schergeschwindigkeit $\dot{\gamma}$ bezeichnet. Die dynamische Viskosität ist das Verhältnis zwischen Schubspannung τ und Schergeschwindigkeit $\dot{\gamma}$.

$$\eta = \frac{\tau}{\dot{\gamma}} \quad (3)$$

(Pahl, Gleißle, Laun 1991)

In der Literatur werden weiterhin Näherungsverfahren vorgestellt, die es ermöglichen, eine mittlere Schubspannung im Rührbehälter zu berechnen, auch für die Verarbeitung nicht-newtonscher Stoffsysteme. Das Verfahren von Metzner/Otto (Metzner und Otto 1957; Metzner et al. 1961) ermöglicht eine Zuordnung von Drehzahl n und Schergeschwindigkeit $\dot{\gamma}$ gemäß

$$\dot{\gamma} = k_{MO} \times n. \quad (4)$$

Die sogenannte Metzner/Otto-Konstante k_{MO} ist geometrieabhängig und liegt für unterschiedliche Rührorgane vor. Letztlich besteht auf diese Weise über die Fließfunktion

$$\eta = \frac{\tau}{\dot{\gamma}} \quad (5)$$
die Möglichkeit einer Zuordnung zwischen Schubspannung und Drehzahl (Todtenhaupt 2000; Pahl et al. 1998). Es gibt noch zahlreiche andere Verfahren, welche eine Zuordnung zwischen Schubspannung und Drehzahl ermöglichen. Allerdings handelt es sich dabei wie bei der Metzner/Otto-Konstante nur um Näherungsverfahren, welche jedoch die für die Beanspruchung verantwortlichen Schubspannungsspitzen nicht abschätzen können.

3.1.4 Viskosität der kontinuierlichen Phase

Die Viskosität spielt für den Rührprozess eine große Rolle, da die Mischbarkeit der Komponenten von der Viskosität der Flüssigkeit abhängig ist. Je niedriger die Viskosität der kontinuierlichen Phase ist, desto leichter mischbar sind die Komponenten. Auch erfordert ein zähflüssiges Mischgut zur Durchmischung Rührorgane, die ein intensives Strömungsfeld erzeugen können.

Neben der Viskosität der kontinuierlichen Phase ist es weiterhin entscheidend, ob es sich um ein newtonsches oder nicht newtonsches Fluid handelt. Ein Fluid ist nicht newtonisch, wenn die Viskosität \(\eta \)

\[
\eta = f(\dot{\gamma}) \quad (6)
\]

von der Schergeschwindigkeit \(\dot{\gamma} \) abhängig ist. Im Rühbehälter erfolgt durch das Rührorgan ein lokaler Energieeintrag, sodass unterschiedliche Schergeschwindigkeitsbereiche vorhanden sind. An den Randbereichen des Rührbehälters ist die Schergeschwindigkeit \(\dot{\gamma} \) klein und somit ist die Viskosität \(\eta \) größer. Im Gegensatz dazu, ist die Schergeschwindigkeit in unmittelbarer Nähe des Rührorgans groß und die Viskosität kleiner. Durch diesen Effekt wird die Durchmischung des Rührgutes erschwert. Zu den nicht newtonschen Fluiden zählen zum Beispiel Joghurt, Quark und Schmand.

3.1.5 Stoßbeanspruchung im Rührprozess

Aufgrund der Trägheit von Partikeln kommt es zu Kollisionen zwischen Partikeln und Behälterwand. Dabei geben die Partikel einen Teil ihrer kinetischen Energie an die Behälterwandung ab, was zu einer plastischen Verformung von Partikel und Behälterwand (nur theoretisch) führt. Durch Kollisionen zwischen Partikeln kommt es zu zufälligen Änderungen der Partikelbahnen und -geschwindigkeiten. Eine exakte Formulierung der hier entstehenden Effekte ist bislang

3.2 Scherbeanspruchung

3.2.1 Scherbeanspruchung bei Flüssig-Flüssig-Systemen

Abb. 6: Fettkugelzerfall beim Homogenisieren (Kessler 1992)

Für die Emulgiereigenschaften sind Rührertyp, Apparategeometrie, Betriebsbedingungen und die Eigenschaften zwischen kontinuierlicher und disperser Phase entscheidend. Der Einfluss dieser Parameter auf den Emulgierprozess wurde von einigen Autoren untersucht (Wollny und Sperling 2007; Liepe et al. 1998; Kipke 1984; Mersmann und Großmann 1980). Die Tropfenzerkleine-

3.2.2 Scherbeanspruchung in biologischen Systemen

Die mechanische Beanspruchung im Rührbehälter ist auch in der Biotechnologie von entscheidender Bedeutung. Über das Strömungsfeld wird eine optimale Nährstoff-, Substrat- und Sauerstoffversorgung der Mikroorganismen gewährleistet. Die induzierten Scherkräfte können aber zu
einer Beeinträchtigung der Stoffwechselaktivität bis hin zum Abtöten der scherempfindlichen Mikroorganismen führen (Biedermann 1994).

Der Einfluss der Viskosität des Kulturmediums auf die mechanische Belastung einer Kultur wird in der Literatur unterschiedlich beurteilt. Während Tanaka et al (1975) bei *Mucor javanicus* eine

3.2.3 **Scherbeanspruchung bei Fest-Flüssig-Systemen**

Für die Auswertung der Literatur ist die Bezugsgröße ein wichtiger Faktor. Der Vergleich der Rührorgane erfolgt entweder über die Drehzahl bzw. Umfangsgeschwindigkeit oder aber über den Leistungseintrag. Erfolgt der Vergleich der Rührorgane über die Drehzahl, so werden axialfördernde Rührer, die eine geringe Leistungsaufnahme aufweisen als scherarm eingestuft. Im Gegensatz dazu werden radialfördernde Rührer, die eine hohe Leistungsaufnahme aufweisen, als scherintensiv bezeichnet. Beim Vergleich der Rührorgane bei gleicher spezifischer Leistung, zeigen sich axialfördernde Rührer als sehr scherintensiv.

Die bisher vorliegenden Ansätze können nicht unmittelbar auf das Rührern grober Partikel übertragen werden, da diese nicht die Beanspruchung grobstückiger Güter wie Früchte, Frucht- und Gemüsestücke untersucht haben. Somit beziehen sich die bereits diskutierten Arbeiten auf vollständig andere Stoffsysteme und berücksichtigen nicht die Größe der Partikel, sodass diese generell nicht auf die Beanspruchung von Rührgütern mit grobdispersen Anteilen bezogen werden können. Auch aus dem Bereich des Feststoffmischens ist keine Übertragung der Methoden möglich, obwohl die Verarbeitung von Schüttungen beim Feststoffmischen auch mit groben Partikeln

Aufgrund dessen sollen in der vorliegenden Arbeit Versuche durchgeführt werden, welche die verantwortlichen Mechanismen, die zu der Schädigung der grobstückigen Partikel im Rührbehälter führen, charakterisiert werden.

3.3 Messung der Partikelgrößenverteilung

4 Material und Methoden

4.1 Material

Für die in der Arbeit beschriebenen Versuche werden folgende Materialien der verschiedenen Hersteller verwendet.

Tab. 1: Verwendetes Material

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar</td>
<td>Oxoid</td>
</tr>
<tr>
<td>Sudan Schwarz</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sonnenblumenöl</td>
<td>EUCO GmbH</td>
</tr>
<tr>
<td>Stärke</td>
<td>Domestic</td>
</tr>
<tr>
<td>Calciumchlorid</td>
<td>Bio Chemica</td>
</tr>
<tr>
<td>Ascorbinsäure</td>
<td>Merck</td>
</tr>
<tr>
<td>Zucker</td>
<td>Nordzucker</td>
</tr>
<tr>
<td>Glucosesirup 01444</td>
<td>Cargill</td>
</tr>
<tr>
<td>Erdbeeren, tiefgekühlt</td>
<td>Theo Müller Group</td>
</tr>
</tbody>
</table>

Des Weiteren wird folgende Ausstattung eingesetzt.

- Waage (Ablesbarkeit 0,01 g; Wägebereich 4200 g)
- Heizplatte (Einstellung der Geschwindigkeit zwischen 0 und 1500 U/min möglich mit einer Drehzahlgenauigkeit von 2 % und einer Höchsttemperatur von 310 °C)
- Rührer Eurostar (Model: EURO-ST-P-CV, IKA-Werke, 50-2000 U/min)
- Verschiedene Rührorgane
- Magnetrührstäbchen (d:8 mm; l:40 mm)
- Thermometer Testo 925 (Messgenauigkeit: 0,1 °C)
- Bechergläser (1000 ml, 5000 ml)
- Edelstahplatte (120 cm x 60 cm x 0,2 cm) mit 2 cm hohem Rand
- Teigschneider aus Edelstahl mit 7 Schneidrädchen, Schnittbreite justierbar von 10 bis 120 mm
- Doppelwandiges Edelstahlrohr
- Spritze, 12 ml
- Kunststoffschlauch Ø 6 mm
4 Material und Methoden

- Schaumkelle, Suppenkelle, Pfannenwender, Sieb, Trichter
- 10-Liter Eimer

4.1.1 Agar

Agar wird auch häufig in der Mikrobiologie als Nährboden für Mikroorganismen genutzt. Dabei werden bei der Herstellung der Agarösung z.B. Nährstoffe zugegeben, welche den Mikroorganismen anschließend als Substrat dienen.

4.1.2 Rührbehälter und Rührertypen

Durch die Verwendung eines zylindrischen Rührbehälters sind die Messergebnisse mit denen anderer Arbeiten vergleichbar (Wille 2000). Die Maße des verwendeten Rührbehälters mit Flachboden sind in Abb. 7 bei Einbau des Propellerrührers dargestellt. Hierbei werden folgende Verhältnisse verwendet: H/D=1, h/H=0,3
Bei den Experimenten werden verschiedene Rührorgane eingesetzt. Dabei handelt es sich sowohl um Axial-, Radial-, als auch um Tangentialrührer, d.h. die Rührer erzeugen unterschiedliche Strömungsfelder (siehe Abb. 1). In Abb. 8 sind die für die Versuche verwendeten Rührer dargestellt.

Abb. 7: Bild und schematische Abbildung [mm] des Versuchsstandes am Beispiel des Propellerrührers

<table>
<thead>
<tr>
<th>Rührer</th>
<th>d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propellerrührer</td>
<td>116</td>
</tr>
<tr>
<td>Ankerrührer</td>
<td>154</td>
</tr>
<tr>
<td>Blattrührer, d=106 mm</td>
<td></td>
</tr>
<tr>
<td>Blattrührer, d=81 mm</td>
<td></td>
</tr>
</tbody>
</table>
Insgesamt wurden acht verschiedene Rührer verwendet. In Tab. 2 sind die Daten der in der Arbeit verwendeten Rührer aufgeführt.

Tab. 2: Daten der verwendeten Rührer

<table>
<thead>
<tr>
<th>Rührertyp</th>
<th>Durchmesser [mm]</th>
<th>Blattzahl</th>
<th>d/D</th>
<th>h/d</th>
<th>hB/d</th>
<th>α [°]</th>
<th>Hauptförderrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blatt</td>
<td>106</td>
<td>1</td>
<td>0,61</td>
<td>0,55</td>
<td>1</td>
<td>-</td>
<td>radial</td>
</tr>
<tr>
<td>Blatt</td>
<td>81</td>
<td>1</td>
<td>0,46</td>
<td>0,72</td>
<td>1</td>
<td>-</td>
<td>radial</td>
</tr>
<tr>
<td>Propeller</td>
<td>116</td>
<td>3</td>
<td>0,66</td>
<td>0,50</td>
<td>0,17</td>
<td>30°</td>
<td>axial</td>
</tr>
<tr>
<td>Anker</td>
<td>154</td>
<td>1</td>
<td>0,88</td>
<td>0,52</td>
<td>0,94</td>
<td>-</td>
<td>radial/tangential</td>
</tr>
<tr>
<td>4-Blatt oval</td>
<td>117</td>
<td>4</td>
<td>0,67</td>
<td>0,50</td>
<td>0,19</td>
<td>-</td>
<td>radial</td>
</tr>
<tr>
<td>4-Blatt oval</td>
<td>117</td>
<td>4</td>
<td>0,67</td>
<td>0,50</td>
<td>0,19</td>
<td>45°</td>
<td>axial</td>
</tr>
<tr>
<td>4-Blatt eckig</td>
<td>117</td>
<td>4</td>
<td>0,67</td>
<td>0,50</td>
<td>0,38</td>
<td>-</td>
<td>radial</td>
</tr>
</tbody>
</table>

Ein besonderes Augenmerk wird hierbei auf den Ankerrührer gelegt, da dieser wandgängig ist und häufig in der Praxis für die Herstellung von Fruchtsauereitungen verwendet wird.

4.1.3 Reynoldszahlen

Tab. 3: Reynoldszahl der verwendeten Rührorgane für Wasser als kontinuierliche Phase

<table>
<thead>
<tr>
<th>Rührorgan</th>
<th>d [mm]</th>
<th>Drehzahl [1/min]</th>
<th>Reynoldszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>Blattrührer</td>
<td>81</td>
<td>16261</td>
<td>27102</td>
</tr>
<tr>
<td>Blattrührer</td>
<td>106</td>
<td>27848</td>
<td>46413</td>
</tr>
<tr>
<td>Ankerrührer</td>
<td>154</td>
<td>58779</td>
<td>97964</td>
</tr>
<tr>
<td>Propellerrührer</td>
<td>116</td>
<td>33350</td>
<td>55583</td>
</tr>
<tr>
<td>4-Blattrührer oval</td>
<td>117</td>
<td>33927</td>
<td>56546</td>
</tr>
<tr>
<td>4-Blattrührer eckig</td>
<td>117</td>
<td>33927</td>
<td>56546</td>
</tr>
</tbody>
</table>

Die Reynoldszahlen in Tab. 3 zeigen, dass es sich unter der Verwendung von Wasser als kontinuierliche Phase bei allen Rührorganen und allen verwendeten Drehzahlen durchgängig um eine turbulente Strömung handelt. Beim Ankerrührer wird die turbulenteste Strömung erzeugt. In der Praxis wird der Ankerrührer mit einer niedrigeren Drehzahl eingesetzt. Da es sich um einen kleinen Behälter mit hohem Partikelanteil handelt muss eine hohe Drehzahl gewählt werden, damit bei allen Rührern eine turbulente Strömung entsteht. Zudem erfolgt der Vergleich der Rührer über die Drehzahl. Beim Blattrührer (Ø 81 mm) wird die geringste Turbulenz erzeugt. In Tab. 4 sind die Reynoldszahlen für die verwendete Glucoselösung dargestellt.

Tab. 4: Reynoldszahl der verwendeten Rührorgane für Glucoselösung als kontinuierliche Phase

<table>
<thead>
<tr>
<th>Rührorgan</th>
<th>d [mm]</th>
<th>Drehzahl [1/min]</th>
<th>Reynoldszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>Blattrührer</td>
<td>106</td>
<td>75</td>
<td>124</td>
</tr>
<tr>
<td>Ankerrührer</td>
<td>154</td>
<td>157</td>
<td>262</td>
</tr>
<tr>
<td>Propellerrührer</td>
<td>116</td>
<td>89</td>
<td>149</td>
</tr>
</tbody>
</table>

Die Versuche werden nur für den vorwiegend tangential fördernden Ankerrührer, für den axial fördernden Propeller- und für den radial fördernden Blattrührer (Ø 106 mm) durchgeführt. Es ist deutlich zu sehen, dass die Reynoldszahl mit Erhöhung der Viskosität auf ca. 2,5 Pas deutlich kleiner wird. Mit Glucoselösung als kontinuierliche Phase handelt es sich nicht mehr um eine turbulente Strömung sondern um eine Übergangsströmung.
4.1.4 Bewehrung

Bei den folgenden Versuchen werden jeweils zwei Stromstörer eingesetzt. Lediglich beim Ankerkrührer wird nur ein Stromstörer verwendet, da sonst die Rotationsgeschwindigkeit zu hoch ist.

4.2 Methoden

4.2.1 Agarwürfel

In der Mikrobiologie wird in der Regel eine Agarlösung mit einer Konzentration von $c=1,5\%$ hergestellt. Da es sich hierbei um sehr feste Nährböden handelt, welche die Festigkeit von Frucht- und Gemüsewürfeln übersteigen, werden für die folgenden Rührversuche Agarlösungen mit einer geringeren Konzentration ($c=0,8\%$, $c=1,0\%$ und $c=1,2\%$) hergestellt. Tab. 5 enthält die Rezeptur der Agarlösung.

Tab. 5: Rezeptur der Agarlösung

<table>
<thead>
<tr>
<th>Agarkonzentration</th>
<th>0,8 %</th>
<th>1,0 %</th>
<th>1,2 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>7920 g</td>
<td>7904 g</td>
<td>7888 g</td>
</tr>
<tr>
<td>Agar</td>
<td>64 g</td>
<td>80 g</td>
<td>96 g</td>
</tr>
<tr>
<td>Sudan Black</td>
<td>16 g</td>
<td>16 g</td>
<td>16 g</td>
</tr>
</tbody>
</table>

4 Material und Methoden

Abb. 9: Agarplatte nach dem Gießen und Abkühlen

Mithilfe eines Winkels und eines Teigschneiders wird der Agar nun manuell in Würfel geschnitten. Dabei wird die Agarplatte zuerst quer und dann längs geschnitten. In Abb. 10 ist der Schneidevorgang der Agarplatte dargestellt. Der Teigschneider muss langsam durch den Agar geführt werden, damit der Agar nicht schon beim Schneiden beschädigt wird und scharfe Kanten entstehen.

Abb. 10: Herstellen der Agarwürfel mit einem Teigschneider

Die Würfel werden nun durch einen Edelstahlpfannenwender vorsichtig von der Edelstahlplatte gehoben und in einen 10-Liter Eimer, welcher bis zur Hälfte kaltes Wasser enthält, gefüllt. Die Agarwürfel werden bis zu ihrer Verwendung bei 8 °C im Kühlraum gelagert.

4.2.2 Agarkugeln

Die Agarlösung wird zunächst, wie in Kapitel 4.2.1 beschrieben, zubereitet und auf ca. 55 °C abgekühlt. Das Öl, welches sich im Rohr befindet, wird durch einen Kühler auf 2 °C heruntergekühlt. Abb. 11 zeigt den Versuchsstand zur Herstellung der Agarkugeln. Es handelt sich um ein doppelwandiges Rohr, das durch eine Kühlflüssigkeit gekühlt werden kann. Auf dem Rohr ist
zusätzlich noch ein Sichtfenster angebracht, wodurch eine gezielte Kugelherstellung ermöglicht wird.

Abb. 12: Herstellung der Agarkugeln

4.2.3 Textur der Agarwürfel

Abb. 13: Prüfgeometrie des Winopal Texture Analysers zur Charakterisierung stückiger Güter
Die Würfel bzw. Kugeln werden einzeln auf den unteren ruhenden Prüfkörper gelegt. Der Abstand der Prüfkörper beträgt 15 mm. Der obere Prüfkörper (5 cm Platte) wird nun mit einer Geschwindigkeit von 1,2 mm/s abgesenkt. Die Messung beginnt, wenn der obere Prüfkörper auf die Probe trifft. Der Prüfweg beträgt ab diesem Augenblick 80 %. Der Textur Analyser zeichnet den Weg (mm) und die Kraft (N) auf. Dabei ist vor allem die Normalspannung beim Aufbrechen der Agarwürfel von Bedeutung. Um ein reproduzierbares Ergebnis zu erhalten, werden von jeder Konzentration jeweils zehn Proben verwendet.

Abb. 14 zeigt exemplarisch ein Kraft-Weg-Diagramm für Agarwürfel c=1,0 %. Am Höhepunkt des Peaks kommt es zum Aufbruch der Agarwürfel. Durch die maximale Kraft lässt sich die Festigkeit der Agarwürfel bestimmen. Die Abmessungen der Agarwürfel betragen 10x10x10 mm. Anhand der Oberfläche der Agarwürfel und der maximalen Kraft wird die Normalspannung berechnet.

4.2.4 Rühren Hauptversuche

Die Hauptrührversuche zur Scherbeanspruchung werden im Rührbehälter (Volumen V=5 l, Behälterdurchmesser D=175 mm, Bewehrung: zwei Stromstörer) unter Einsatz von Wasser durchgeführt. Für die Rührversuche werden verschiedene Rührorgane verwendet, um den Einfluss der Rührorgane auf die Beschädigung der Agarwürfel zu untersuchen. Um Beschädigungen der empfindlichen Agarwürfel vor Versuchsbeginn zu vermeiden, werden zunächst 2000 g Agarwürfel abgewogen und mit 1500 g Wasser aufgegossen. Das Gemenge wird in den Rührbehälter

4.2.5 Einfluss der Blattgeometrie

Um einen direkten Vergleich zwischen unterschiedlichen Blattgeometrien zu ermöglichen, wird ein Rührer mit verstell- und auswechselbaren Rührblättern verwendet. Die Blattgeometrien repräsentierten die wesentlichen Parameter Blattgröße, Blatthöhe, Anstellwinkel und Kantigkeit der Außenkontur. Als Rührblatt wird zum einen eine rechteckige Geometrie mit der Blattlänge $l_B=38,5$ mm und der Blatthöhe $h_B=22$ mm eingesetzt. Daneben wird eine Geometrie mit gleicher Blattlänge und doppelter Blatthöhe $l_B=44$ mm benutzt. Das dritte Rührblatt hat eine äußere Kante, die die Kontur eines Halbkreises aufweist. Die Blattlänge ist $l_B=38,5$ mm und die Blatthöhe ist erneut $h_B=22$ mm.

Abb. 15 zeigt die einzelnen Rührblätter des modifizierbaren Rührorgans.

4.2.6 Kritische Schubspannung

Um die kritische Schubspannung der einzelnen Rührorgane zu erfassen, wird eine sogenannte Grenzdrehzahl ermittelt. Die Grenzdrehzahl ist die Drehzahl, die erstmalig zu einer Zerstörung der Partikel führt. Hierfür wird ein Standardversuch vorbereitet, d.h. es werden 2000 g Agarwürfel (c=1,0 %) auf 2000 g Wasser in ein 5-Liter-Becherglas eingewogen. Begonnen wird mit der für den Rührer niedrigsten möglichen Drehzahl (50 U/min); die Zeitintervalle bei jeweils konstanter Drehzahl betragen zwei Minuten. Nach dem Ablauf der zwei Minuten wird der Versuch gestoppt und eine optische Auswertung der Agarwürfel durchgeführt. Weisen die Agarwürfel keinerlei Beschädigung auf, so wird die Drehzahl um 25 U/min erhöht und das nächste Zeitintervall gestartet. Dieser Versuch wird solange durchgeführt, bis die Agarwürfel die ersten Beschädigungen (abgebrochene Ecken) aufweisen.

4.2.7 Viskosität der kontinuierlichen Phase

Tab. 6: Rezeptur einer Standardfruchtzubereitung (DIL)

<table>
<thead>
<tr>
<th>Zutat</th>
<th>Einwaage [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>29,34</td>
</tr>
<tr>
<td>Erdbeeren</td>
<td>50,00</td>
</tr>
<tr>
<td>Kristallzucker</td>
<td>17,34</td>
</tr>
<tr>
<td>Stärke</td>
<td>2,80</td>
</tr>
<tr>
<td>Calciumchlorid</td>
<td>0,22</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Die Viskosität der kontinuierlichen Phase der Fruchtzubereitung wird bei 20 °C und bei 90 °C gemessen. Da es sich bei der Stärkelösung um ein nicht newtonsches Fluid handelt, ist die Viskosität von der Schergeschwindigkeit abhängig. Für die Versuche mit erhöhter Viskosität wird Glucosesirup verwendet, da es sich hierbei um ein newtonsches Fluid handelt und somit die Vis-
kosität trotz zunehmender Schergeschwindigkeit konstant bleibt. Hierfür werden Proben aus Glucosesirup und Wasser hergestellt und auf ihre Viskosität untersucht. Die Glucoselösungen haben verschiedene Trockensubstanzen (TS): 41,67 %, 50,00 %, 58,33 %, 66,67 % und 75,00 %.

Abb. 16 zeigt die Viskosität der verschiedenen Proben in Abhängigkeit von der Schergeschwindigkeit. Es wird deutlich, dass die Viskosität der Fruchtzubereitung auch von der Temperatur abhängig ist. Der Mittelwert der Fruchtzubereitung bei 20 °C beträgt ca. 5 Pas, bei 90 °C ca. 2,5 Pas. Für die Rührversuche soll die Viskosität der kontinuierlichen Phase ca. 2,5 Pas betragen, um die Viskosität einer Fruchtzubereitung während des Kochvorgangs zu simulieren. Die Glucoselösung mit einer Trockensubstanz von 66,67 % hat eine Viskosität von ca. 0,5 Pas. Gegenüber hat die Glucoselösung mit einer Trockensubstanz von 75 % eine Viskosität von ca. 4,5 Pas. Um eine Viskosität der kontinuierlichen Phase von ca. 2,5 Pas zu erhalten, wird die Trockensubstanz auf ca. 71 % eingestellt und die Viskosität anschließend erneut gemessen. In Abb. 16 ist das Ergebnis der Viskositätsmessung für die Glucoselösung mit einer Trockensubstanz von ca. 71 % dargestellt.

4.2.8 Optische Auswertung der Agarwürfel

Nachdem die Agarwürfel unter bestimmten Bedingungen im Rührbehälter gerührt wurden, erfolgt eine rein optische Auswertung der Beschädigung der Agarwürfel. Hierbei werden ca. 150 g Agarwürfel aus dem Rührbehälter entnommen. Dabei ist darauf zu achten, dass es sich um eine...

Abb. 17: Kategorien der Agarwürfel nach der Scherbeanspruchung

Beim sogenannten Agarschlamm handelt es sich um ein Agar-Wasser-Gemisch, in welchem durch Ertasten keine feste Struktur mehr erkennbar ist. Nachdem die Agarwürfel in die fünf verschiedenen Kategorien eingeordnet wurden, werden die einzelnen Kategorien gewogen. Dadurch lässt sich ein prozentualer Anteil der Kategorien bestimmen.
4 Material und Methoden

Abb. 18 zeigt die Agarwürfel, die anhand der optischen Begutachtung in die entsprechenden fünf Kategorien eingeteilt werden. Jeder Versuch wird nach diesem festgelegten System ausgewertet. Sollte eine Kategorie aufgrund einer starken bzw. geringen Beschädigung nicht vorhanden sein, dann wird anstelle der Agarwürfel eine Spalte an der entsprechenden Stelle freigehalten. Somit können die unterschiedlichen Bilder schnell und einfach ausgewertet werden.

In einigen nachfolgenden Versuchen werden übersichtlicher Weise die Kategorien zusammengefasst. Hierbei bilden die unbeschädigten Würfel (Kategorie A) und die ganzen Würfel mit abgerundeten Ecken (Kategorie B) die Einheit „unbeschädigte Partikel“. Der Grund hierfür ist, dass es sich bei den abgerundeten Würfeln nicht um eine Beschädigung in diesem Sinne handelt. Es wurde keine Zerstörung der Partikel bewirkt, sondern lediglich die Kanten abgerundet. Des Weiteren bilden die Würfel mit abgebrochenen Ecken (Kategorie C), die kleinen Agartücke (Kategorie D) und der Agarschlamm (Kategorie E) die Einheit „beschädigte Partikel“. Durch das Zusammenfassen der Kategorien zu Einheiten wird der Vergleich zwischen den verschiedenen Versuchen mit unterschiedlichen Rührorganen vereinfacht.
5 Ergebnisse

5.1 Textur der Agarwürfel

Bevor die eigentlichen Versuche durchgeführt werden können, muss die maximal zulässige Beanspruchung des zu verarbeitenden Stoffsystems bestimmt werden. Hierzu wird die Textur von verschiedenen, aufgetauten Fruchtwürfeln mithilfe des Texture Analysers untersucht. Als Referenzsystem für die Fruchtwürfel werden Agarwürfel verwendet. Diese werden mit den Konzentrationen c=0,8 %, c=1,0 % und c=1,2 % hergestellt und die Textur untersucht. Das Ziel ist, die Textur der Agarwürfel an die Textur der aufgetauten Fruchtwürfel anzupassen. Somit können die Versuche unter Ausschluss von Schwankungen der Stoffwerte durchgeführt werden. Abb. 19 stellt die Normalspannung beim Aufbrechen der Agar- und Fruchtwürfel dar.

![Diagramm der Normalspannung beim Aufbrechen der Agar- und Fruchtwürfel](image)

Aus Abb. 19 geht hervor, dass mit steigender Konzentration der Agarwürfel die Normalspannung größer wird. Der Anstieg der Normalspannung der Agarwürfel ist nahezu proportional zum Anstieg der Konzentration. Vergleicht man die Normalspannung der Agarwürfel mit der Spannung der Fruchtwürfel, dann lässt sich feststellen, dass die drei gewählten Konzentrationen der Agarwürfel die Festigkeit der aufgetauten Fruchtwürfel sehr gut abdecken. Allgemein wird festgestellt, dass die Normalspannungen σ für Frucht- und Agarwürfel sehr klein sind und es sich somit um sehr scherempfindliche Stoffsysteme handelt. Für die folgenden Rührversuche eignen sich dementsprechend alle drei gewählten Konzentrationen. Aufgrund dieses Ergebnisses werden für die Hauptversuche Agarwürfel mit einer Konzentration von c=1,0 % gewählt, da sie einen
guten Mittelwert der gemessenen Schubspannung haben. Die Konzentrationen c=0,8 % und c=1,2 % werden nur für einzelne Standardversuche eingesetzt, um den Einfluss der unterschiedlichen Konzentrationen auf die Beschädigung der Agarwürfel zu verdeutlichen.

5.2 Charakterisierung der Rührorgane bei gleichen Bedingungen

Zur Charakterisierung der einzelnen Rührorgane, werden für jedes Rührorgan Versuche zu gleichen Bedingungen durchgeführt. Nachfolgend sind die Ergebnisse der Beanspruchung der Partikel in Abhängigkeit von der Rührzeit dargestellt. Die Drehzahl beträgt bei allen Versuchen 250 U/min, die Konzentration des Agars c=1,0 % und die kontinuierliche Phase besteht aus Wasser.

Abb. 20 stellt die prozentualen Anteile der einzelnen Kategorien in Abhängigkeit von der Rührzeit für den vorwiegend tangential fördernden Ankerrührer dar.

Nach einer Rührzeit von einer Minute sind bereits nur noch 15,70 % unbeschädigte Würfel (Kategorie A) vorhanden. Den größten Anteil mit 43,98 % haben die ganzen Würfel mit abgerunden Ecken (Kategorie B). Die Würfel mit abgebrochenen Ecken (Kategorie C) haben einen Anteil von 27,74 %. Einen relativ kleinen Anteil haben die kleinen Agarstücke (Kategorie D) mit 11,87 %. Den kleinsten Anteil mit 0,71 % hat der Agarschlamm (Kategorie E).

Nach einer Rührzeit von fünf Minuten ändert sich die Verteilung der Agarwürfel in den Kategorien drastisch. Es sind keine unbeschädigten Würfel mehr vorhanden und auch der Anteil der ganzen Würfel mit abgerunden Ecken sinkt auf 13,98 %. Die ehemals unbeschädigten Partikel werden nun ebenfalls beschädigt und der Anteil an Würfeln mit abgebrochenen Ecken steigt deshalb auf 44,11 % an. Der Anteil an kleinen Agarstücken steigt auf 26,86 % und der Anteil an Agarschlamm steigt auf 15,05 % an.

Nach einer Rührzeit von zehn Minuten sind noch 2,26 % Agarwürfel der Einheit „unbeschädigte Partikel“ (Kategorie A und B) vorhanden. Auch die Agarwürfel mit abgebrochenen Ecken nehmen jetzt ab und sind nur noch mit 11,57 % vertreten. Die restlichen 86,17 % der beschädigten Partikel verteilen sich auf die Kategorien D und E.

Nach einer Rührzeit von 20 Minuten sind nur noch Partikel der Gruppe kleine Agarstücke und Agarschlamm (Kategorie D und E) vorhanden. Der Anteil an kleinen Agarstücken (Kategorie D) ist auf 19,22 % gesunken. Im Gegensatz dazu ist der Anteil an Agarschlamm (Kategorie E)
auf 80,78 % gestiegen. Um das Ergebnis zusätzlich zu verdeutlichen, sind in Abb. 21 die Bilder der Kategorien des Rührversuchs mit dem Ankerrührer dargestellt. Die Agarwürfel wurden jeweils anhand ihres Beschädigungsgrades in die fünf festgelegten Kategorien (von links nach rechts) sortiert.

![Rührzeit t=1 min](image1)

![Rührzeit t=5 min](image2)

![Rührzeit t=10 min](image3)

![Rührzeit t=20 min](image4)

Abb. 21: Ankerrührer - Anteile der Kategorien in Abhängigkeit von der Rührzeit

Der Rückgang der unbeschädigten und der Würfel mit abgerundeten Ecken (Kategorie A und B) ist deutlich zu erkennen. Gleichzeitig nimmt die Fraktion der beschädigten Würfel (Kategorie C, D und E) stetig zu. Nach 20 Minuten sind nur noch Kategorie D und E vertreten.

Nachdem die Ergebnisse für den tangential fördernden Ankerrührer aufgeführt wurden, werden nun die Auswirkungen der radialfördernden Rührer betrachtet. Zu den radial fördernden Rührern zählen die unterschiedlich großen Blattrührer und die 4-Blattrührer mit austauschbaren, aber nicht angestellten Rührblättern. Zunächst werden die beiden Blattrührer mit unterschiedlich
großen Blattflächen vorgestellt. Die genaue Charakterisierung der 4-Blattrührer erfolgt in Kapitel 5.2.1. Für den Blattrührer mit einem Durchmesser von 106 mm wird erwartet, dass er durch seine hohe Umfangsgeschwindigkeit zu einer starken Beanspruchung der Partikel führt. In Abb. 22 sind die Ergebnisse für den Blattrührer aufgeführt.

Nach fünf Minuten Rührzeit nimmt der Anteil an Würfeln mit abgebrochenen Ecken auf 77,95 % zu. Dies ist eine Folge davon, dass der Anteil an unbeschädigten Würfeln und Würfeln mit abgerundeten Ecken auf 4,41 % sinkt. Der Anteil an Agarstücken und Agarschlamm steigt auf 17,64 % an.

Mit Zunahme der Rührzeit auf 10 und 20 Minuten bleibt die Anzahl an Würfeln mit abgebrochenen Ecken vergleichsweise stabil. Dafür steigt der Anteil an Agarstücken und Agarschlamm, Würfel mit abgerundeten Ecken sind keine mehr vorhanden. Dieser Vorgang ist allerdings viel langsamer, als beim Ankerrührer. Für den Blattrührer mit einem Durchmesser von 81 mm wird eine kleinere Zerstörung erwartet, als für den Blattrührer mit einem Durchmesser von 106 mm,
da dieser eine geringere Umfangsgeschwindigkeit bei gleicher Drehzahl aufweist. In Abb. 23 sind die Ergebnisse für den Blattrührer (Ø 81 mm) dargestellt.

Abb. 23: Blattrührer Ø 81 mm - Prozentuale Anteile der einzelnen Kategorien in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser)

Als nächstes wird der axial fördernde Propellerrührer vorgestellt. Für ihn wird bei einem Vergleich über die Drehzahl eine geringe Beanspruchung der Partikel erwartet. In Abb. 24 werden die Ergebnisse für den axial fördernden Propellerrührer dargestellt.

Um die unterschiedliche Beanspruchung der Partikel durch die verschiedenen Rührertypen zu verdeutlichen, sind in der nachfolgenden Abbildung die beschädigten Partikel (Kategorie A und B) der einzelnen Rührer dargestellt. Die Einzelergebnisse des 4-Blattrührers oval, oval 45°, eckig und groß eckig werden in Kapitel 5.2.1 noch ausführlich dargestellt und diskutiert. Abb. 25 soll lediglich einen Überblick über die unterschiedliche Beanspruchung der Partikel durch die Verwendung verschiedener Rührer ermöglichen.

Abb. 24: Propellerrührer - Prozentuale Anteile in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser)
Aus Abb. 25 geht hervor, dass es sich bei dem 4-Blattrührer groß eckig offensichtlich um den scherintensivsten Rührer handelt. Bereits nach einer Minute Rührzeit weist dieser einen Anteil an beschädigten Partikeln von 69,91 % auf; dicht gefolgt vom Blattrührer (Ø 106 mm) mit einem Anteil von 63,07 %. Die geringste Beschädigung der Partikel nach einer Minute Rührzeit weisen der Blattrührer (Ø 81 mm) und der Propellerrührer mit jeweils ca. 4 % auf.

Insgesamt lässt sich feststellen, dass die Beanspruchung der Partikel nicht nur auf grund eines Faktors (Drehzahl/Umfangsgeschwindigkeit, Rührzeit, Blattgeometrie, Strömungsfeld) definiert werden kann. Offensichtlich spielt die Kombination der verschiedenen Faktoren eine große Rolle. Inwieweit jeder einzelne Faktor einen Einfluss auf die Beanspruchung der Partikel hat, wird in den nachfolgenden Kapiteln untersucht.

Um den Einfluss der Drehzahl auf den Rührprozess zu verdeutlichen, werden verschiedene Drehzahlen für die Rührer gewählt. In Abb. 26 sind exemplarisch die prozentualen Anteile der einzelnen Kategorien für den großen Blattrührer mit einem Durchmesser von 106 mm, in Abhängigkeit von der Drehzahl, dargestellt.

In Abb. 27 sind die beschädigten Partikel (Kategorie C, D und E) der vier vorgestellten Rührer in Abhängigkeit von der Drehzahl dargestellt. Dies ermöglicht einen direkten Vergleich des Einflusses der Drehzahl auf die Beanspruchung der Partikel.
5 Ergebnisse

5.2.1 Einfluss der Blattgeometrie

Um den Einfluss der Blattgeometrie auf die Beanspruchung der Partikel zu prüfen, wird eine Drehzahl von 250 U/min gewählt, da es bei dieser Drehzahl bereits in den Hauptversuchen zu einer deutlich nachweisbaren Beschädigung der Partikel kommt. Alle verwendeten Rührer haben mit 117 mm denselben Rührerdurchmesser, sodass alle Rührer mit 1,5 m/s dieselbe Umfangsgeschwindigkeit und eine Reynoldszahl von 33.927 haben. Die Form der Rührblätter ist somit der einzige Unterschied der Rührer, wodurch ein exakter Vergleich der Beanspruchung der Partikel durch unterschiedliche Geometrien (siehe Kapitel 4.2.5 und Abb. 15) möglich ist. Tab. 7 zeigt die verwendeten Rührorgane.

<table>
<thead>
<tr>
<th>Rührer</th>
<th>Rührerdurchmesser d [mm]</th>
<th>Blattlänge l_B [mm]</th>
<th>Blatthöhe h_B [mm]</th>
<th>Blattzahl</th>
<th>Anstellwinkel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Blatt eckig</td>
<td>117</td>
<td>38,5</td>
<td>22</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>4-Blatt gr.eckig</td>
<td>117</td>
<td>38,5</td>
<td>44</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>4-Blatt oval</td>
<td>117</td>
<td>38,5</td>
<td>22</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>4-Blatt oval</td>
<td>117</td>
<td>38,5</td>
<td>22</td>
<td>4</td>
<td>45°</td>
</tr>
<tr>
<td>Propeller</td>
<td>116</td>
<td>38,0</td>
<td>22</td>
<td>3</td>
<td>30°</td>
</tr>
</tbody>
</table>

Abb. 28: 4-Blattrührer oval – Prozentuale Anteile der einzelnen Kategorien in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser)

Abb. 29: 4-Blattrührer eckig – Prozentuale Anteile der einzelnen Kategorien in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser)

Abb. 30: 4-Blattrührer gr. eckig - Prozentuale Anteile der einzelnen Kategorien in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser)

Agarwürfel haben. Beim 4-Blattrührer eckig ist eine minimal größere Beanspruchung gegeben, aber der Unterschied ist sehr klein.

Beim letzten Versuch wurden die ovalen Rührblätter verwendet. Allerdings wurden diese im 45° Winkel angestellt und somit eine Veränderung des Strömungsfeldes hervorgerufen. Bei diesem Rührer wird ein axiales Strömungsfeld erzeugt. Aus Abb. 31 geht hervor, dass sich der 4-Blattrührer oval, mit angestellten Rührblättern, genauso verhält, wie der 4-Blattrührer oval. Die Diagramme sind nahezu identisch, obwohl der 4-Blattrührer oval ein radiales und der 4-Blattrührer oval 45° ein axiales Strömungsfeld hat. Dadurch lässt sich vermuten, dass die Rührergeometrie einen wichtigen Einfluss auf die Beanspruchung der Partikel hat.

In Abb. 32 sind die Ergebnisse der Rührer mit verschiedenen Blattgeometrien dargestellt. Der Propellerrührer hat, wie erwartet, eine sehr geringe Beschädigung der Agarwürfel bewirkt. Selbst nach einer Rührzeit von 20 Minuten sind noch 49,68 % der Partikel unbeschädigt. Der Anstieg der Beschädigung, bezogen auf die Zeit, ist beim Propellerrührer nahezu linear. Der 4-Blattrührer oval (45° Winkel) verursacht hingegen eine große Beanspruchung der Partikel. Bereits nach zehn Minuten sind alle Partikel ausnahmslos beschädigt. Für den Propeller- und den 4-Blattrührer oval (45° Winkel) sind ähnliche Ergebnisse erwartet worden, da sie beide ein axiales Strömungsfeld und eine ähnliche Rührergeometrie vorweisen. Eine mögliche Erklärung für die unterschiedlichen Ergebnisse der beiden Rührer könnte sein, dass der Propellerrührer nur drei Rührblätter hat, die im 30° Winkel angeordnet sind. Insgesamt ist der Propellerrührer hydrodynamischer geformt und hat keine klaren Kanten und Linien wie der 4-Blattrührer oval mit angeordneten Rührblättern (45° Winkel). Beim Vergleich des 4-Blattrührers oval mit dem 4-Blattrührer oval (45° Winkel), lässt sich bereits nach fünf Minuten Rührzeit ein Unterschied im Zerstörungsgrad feststellen. Während der 4-Blattrührer oval bereits 81,33 % der Partikel beschädigt hat, sind es beim 4-Blattrührer oval (45° Winkel) nur 72,05 %. Zwischen den radialfördernden 4-Blattrührern oval und eckig sind keine nennenswerten Unterschiede feststellbar. Lediglich nach fünf Minuten Rührzeit hat der 4-Blattrührer eckig 9,35 % mehr Partikel beschädigt. Jedoch ist deutlich zu erkennen, dass bei Zunahme der Blattlänge auch der Beschädigungsgrad der Partikel deutlich steigt. Während die Beschädigung der Partikel bei den kleinblättrigen 4-Blattrührern nach einer Minute zwischen 21,89 % und 31,48 % liegt, sind bei dem großblättrigen 4-
Blattrührer bereits 69,91 % der Partikel beschädigt. Nach einer Rührzeit von fünf Minuten sind beim großblättrigen 4-Blattrührer alle Partikel zerstört.

5.2.2 Kritische Schubspannung

In Abb. 33 ist die Grenzdrehzahl in Abhängigkeit von der Festigkeit der Agarwürfel dargestellt. Bei einem Vergleich der Rührer über die Drehzahl wird erwartet, dass es beim axial fördernden Propellerrührer erst bei höheren Drehzahlen zu einer Beschädigung der Partikel kommt. Von dem radial fördernden 4-Blattrührer oval wird eine Beanspruchung der Partikel, bei niedrigen Drehzahlen, vermutet. Die radial fördernden Blattrührer (Ø 81 mm und Ø 106 mm) sollen aufgrund ihrer großen Blattfläche bei niedrigen Drehzahlen zu einer Zerstörung der Partikel führen. Allerdings sollte der große Blattrührer mit einem Durchmesser von 106 mm zu einer stärkeren
Beschädigung führen als der kleine Blattrührer mit einem Durchmesser von 81 mm, da er bei gleicher Drehzahl eine höhere Umfangsgeschwindigkeit hat.

Damit auch der Durchmesser der Rührorgane beachtet wird, sollte die Umfangsgeschwindigkeit in Bezug auf die Festigkeit der Agarwürfel betrachtet werden. In Abb. 34 ist die kritische Umfangsgeschwindigkeit in Abhängigkeit von der Agarkonzentration dargestellt. Dies ermöglicht einen eindeutigen Vergleich der Grenzdrehzahl. Beim Vergleich anhand der Umfangsgeschwin-
digkeit wird erwartet, dass der Ankerrührer die Partikel nicht so stark beansprucht, wie beim Vergleich über die Drehzahl. Der große Blattrührer mit einem Durchmesser von 106 mm sollte der Partikel aufgrund des höheren Energieeintrages mehr beanspruchen als der kleine Blattrührer mit einem Durchmesser von 81 mm.

5 Ergebnisse

5.3 Unterschiedliche Anteile an Agarwürfeln

![Diagramm zu Abb. 35](image-url)

Der Verlauf der Kurve der Agarkugeln zeigt dagegen eine deutlich geringere Beanspruchung. Erst ab einem Anteil über 50 % Agarkugeln ist eine Zunahme der Beanspruchung festzustellen. Hier kann die Theorie, dass die Beschädigung der Agarkugeln mit Zunahme des Anteils steigt, nicht vollkommen bestätigt werden. Beim Vergleich zwischen Agarwürfeln und –kugeln stellt sich heraus, dass die Form der Partikel offensichtlich einen sehr großen Einfluss auf die Beanspruchung der Partikel hat. Eine Kugel hat eine stabilere Form als ein Würfel. Die Ecken eines Würfels brechen viel schneller ab, als ein Stück aus einer Kugel heraus. Bei einem Anteil von 50 % beträgt der Anteil der beschädigten Würfel bereits 78,43 %. Der Anteil der beschädigten Kugeln hingegen liegt nur bei 7,35 %.

Rein optisch kann bei diesen Versuchen beobachtet werden, dass die Strömung während des Rührvorgangs, gerade mit einem hohen Anteil an Agarwürfeln, sehr viel inhomogener ist, als mit Agarkugeln. Wenn die Agarwürfel noch scharfkantig und unbeschädigt sind, so neigen sie dazu, sich hinter dem Stromstörer zu sammeln und mit der flachen Seite an der Behälterwand zu haften, während sie sich mit der Strömung bewegen. Dies ist bei niedrigen Drehzahlen, während des unversehrten Zustandes der Agarwürfel und ausschließlich ab einem Anteil an Agarwürfeln von 50 % zu beobachten. Die Agarkugeln hingegen haben durch ihre hydrodynamische Form nicht die Möglichkeit, an der Behälterwand zu haften oder sich hinter dem Stromstörer zu sammeln. Ihre Bewegung während des Rührprozesses wirkt dadurch sehr viel homogener.

Um den Einfluss der Strömungsform und des Rührers zu überprüfen, werden die Versuche mit einem geringen Anteil an Agarwürfeln/-kugeln, mit verschiedenen Rührorganen, durchgeführt. Hierfür werden der große, radial fördernde Blattrührer mit einem Durchmesser von 106 mm, der axial fördernde Propellerrührer und der vorwiegend tangential fördernde Ankerrührer ausgewählt. Die Rührzeit beträgt 20 min bei einer Drehzahl von 150 U/min. Wichtig ist, dass in diesem und dem darauf folgenden Diagramm nicht der Anteil der beschädigten Partikel, sondern der Anteil an unbeschädigten Partikeln dargestellt wird. Die Abb. 36 zeigt den prozentualen An-
teil der unbeschädigten Agarwürfel in Abhängigkeit von dem Anteil an Agarwürfeln im Rührprozess.

In Abb. 36 ist deutlich zu erkennen, dass der Blattrührer (Ø 106 mm) bei einem Anteil von 0,5 % und 1,25 % Agarwürfeln zu einer sehr geringen Beanspruchung der Agarwürfel führt. Bei einem Anteil von 0,5 % Agarwürfeln beträgt der Anteil an unbeschädigten Partikeln 98,94 %. Durch die Erhöhung des Anteils an Agarwürfeln auf 1,25 %, sinkt der Anteil an unbeschädigten Partikeln auf 92,23 %. Der Propellerrührer verursacht hingegen eine größere Beanspruchung der Partikel. Bei einem Anteil von 0,5 % Agarwürfel sind 52,99 % der Partikel unbeschädigt. Bei Erhöhung des Anteils an Agarwürfel auf 1,25 %, sinkt der Anteil an unbeschädigten Partikeln auf 41,37 %. Der vorwiegend tangential rührende Ankerrührer verursacht bei einem Vergleich über die Drehzahl die größte Beanspruchung der Agarwürfel. Bei einem Anteil von 0,5 % sind nur noch 30,14 % der Agarwürfel unbeschädigt. Durch die Erhöhung des Anteils an Agarwürfel auf 1,25 %, sinkt der Anteil an unbeschädigten Partikeln auf 16,14 %.

Insgesamt ist zu erkennen, dass bei allen drei Rührern mit Zunahme des Anteils an Agarwürfel auch die Beanspruchung der Partikel steigt. Durch die Zunahme des Anteils an Agarwürfel, kommt es vermehrt zu Kollisionen zwischen Partikel und Rührer (Liepe 1998). Die Partikel-Partikel-Wechselwirkung kann bei diesen niedrigen Anteilen an Agarwürfeln vernachlässigt werden, d.h. dass die Beanspruchung der Partikel entweder auf die Rührergeometrie oder die Strömungsform der Rührer zurückzuführen ist. Bei den Agarkugeln ist ein anderes Verhalten ersichtlich.
5 Ergebnisse

Insgesamt wird festgestellt, dass der Anteil der Agarwürfel einen starken Einfluss auf deren Beanspruchung hat. Je größer der Anteil an Agarwürfeln, desto größer ist auch deren Beanspruchung. Bei den Agarkugeln wird dies nur begrenzt festgestellt, da die Agarkugeln durch ihre hydrodynamische Form offensichtlich eine geringere Stoßbeanspruchung durch den Rührer erfahren.

5.4 Unterschiedliche Festigkeit der Agarwürfel

Um den Einfluss der Konzentration bzw. der Festigkeit der Agarwürfel auf die Beanspruchung dieser zu untersuchen, wird die Konzentration der Agarwürfel verändert. Für die Versuche werden jeweils Agarwürfel mit Konzentrationen von c=0,8 %, c=1,0 % und c=1,2 % hergestellt. Durch diesen Versuch soll der Einfluss der Festigkeit der Agarwürfel auf deren Beanspruchung bestimmt werden. Es ist zu erwarten, dass die Beanspruchung der Agarwürfel mit Abnahme der

![Abb. 38: Blattrührer Ø 106 mm - Prozentualer Anteil der beschädigten Partikel in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel, kontinuierliche Phase: Wasser)](image)

Es ist unverkennbar, dass die Festigkeit einen entscheidenden Einfluss auf die Beanspruchung der Agarwürfel hat. Nach einer Minute Rührzeit liegt der Anteil der beschädigten Partikel mit einer Konzentration von c=0,8 % bei 52,35 %, mit c=1,0 % bei 35,16 % und mit c=1,2 % bei 14,34 %. Die Anteile der beschädigten Partikel steigen proportional zur Rührzeit und zur Festigkeit der Agarwürfel. Die unterschiedlichen Festigkeiten der Agarwürfel spiegeln sich im Anteil der beschädigten Partikel wider. Die vorangestellten Erwartungen zum Einfluss der Festigkeit der Agarwürfel können somit für den Blattrührer mit einem Durchmesser von 106 mm bestätigt werden. Je geringer die Festigkeit der Agarwürfel, desto größer ist die Scherempfindlichkeit der Agarwürfel.

Auch beim Propellerrührer ist zu erkennen, dass die Festigkeit der Agarwürfel einen Einfluss auf die Beanspruchung der Agarwürfel hat. Nach zehn Minuten Rührzeit liegt der Anteil der beschädigten Partikel mit einer Konzentration von c=0,8 % bei 81,78 %, mit c=1,0 % bei 42,77 % und mit c=1,2 % bei 38,80 %. Der Unterschied in der Beanspruchung der Partikel zwischen dem Agar mit einer Konzentration von c=1,0 % und c=1,2 % ist nicht so ausgeprägt, wie beim Blattrührer (Ø 106 mm). Bei allen Rührzeiten sind es lediglich bis zu 7 % mehr beschädigte Partikel bei c=1,0 %. Dennoch ist bei allen drei Konzentrationen eine Zunahme der Beanspruchung der Partikel mit Verlängerung der Rührzeit zu beobachten.

Eine mögliche Erklärung für die ähnlichen Ergebnisse der Konzentration c=1,0 % und c=1,2 % wäre, dass die Festigkeit des Agars ab einer gewissen Agarkonzentration keinen entscheidenden Einfluss auf die Beanspruchung der Partikel hat. Oder das zum Beispiel das axiale Strömungsfeld des Propellerrührers nur bis zu einer gewissen Festigkeit des Agars einen Einfluss auf die Beschädigung der Agarwürfel hat.

Als letztes wird der Versuch mit dem vorwiegend tangential fördernden Ankerrührer durchgeführt. Auch hier wird wieder erwartet, dass die Beanspruchung der Agarwürfel nahezu proportional mit der Festigkeit des Agars steigt.
5 Ergebnisse

Abb. 40 stellt die Anteile der beschädigten Partikel des Ankerrührers in Abhängigkeit von der Rührzeit dar. Die Ergebnisse des Ankerrührers unterscheiden sich hierbei stark von den Ergebnissen des Propeller- und Blattrührers (Ø 106 mm). Nach zehn Minuten Rührzeit liegt der Anteil der beschädigten Partikel mit einer Konzentration von c=0,8 % bei 93,05 %, mit c=1,0 % bei 97,74 % und mit c=1,2 % bei 69,07 %. Die Beanspruchung der Partikel mit einer Konzentration von c=0,8 % und c=1,0 % ist für t ≥ 5 min nahezu gleich. Bei t = 1 ist die Schädigung der Partikel mit c=0,8 % deutlich kleiner als bei Partikel mit c=1,0 %. Das Ergebnis entspricht zunächst nicht der vorangestellten Erwartung, dass mit Erhöhung der Festigkeit die Schädigung der Partikel vermindert wird. Eine mögliche Erklärung hierfür ist, dass der wandgängige Ankerrührer die Partikel nicht nur durch eine Stoßbeanspruchung sondern auch durch Zerdrücken an der Wand beschädigt. Je weicher die Partikel sind, desto elastischer sind sie auch. Die Partikel mit einer Konzentration von c=0,8 % sind somit elastischer als die Partikel mit c=1,0 %. Die Elastizität ist der Grund dafür, dass die Partikel weniger an der Wand zerdrückt werden, d.h. der Anteil der beschädigten Partikel ist bei c=0,8 % geringer. Bei einer Konzentration von c=1,0 % scheinen die Partikel gleichermaßen durch Zerdrücken an der Wand und durch Stoßbeanspruchung beschädigt zu werden. Bei Partikeln mit einer Konzentration von c=1,2 % ist die Elastizität nicht mehr gegeben, die erhöhte Festigkeit führt aber zu einer erhöhten Stabilität und somit zu einer geringeren Beschädigung der Partikel.
In Abb. 41 ist eine Übersicht der drei verschiedenen Rührer dargestellt.

Abb. 41: Prozentuale Anteile der beschädigten Partikel in Abhängigkeit von der Konzentration der Agarwürfel (250 U/min, t=10 min, Agarwürfel, kontinuierliche Phase: Wasser)

Abb. 41 stellt die Ergebnisse der verschiedenen Rührer dar. Bei allen drei Rührern ist deutlich zu erkennen, dass die Festigkeit der Agarwürfel einen sehr großen Einfluss auf deren Scherempfindlichkeit hat. Je höher die Festigkeit der Agarwürfel, desto kleiner ist der Anteil der beschädigten Partikel. Die vorangestellte Erwartung wird somit zumindest vom Propeller- und vom Blattrührer (Ø 106 mm) bestätigt. Der Ankerrührer erfüllt die Erwartung nur für Agar mit einer Konzentration von c=1,0 % und c=1,2 %. Die Ergebnisse für den Agar mit einer Konzentration von c=0,8 % scheinen hierbei den ursprünglichen Erwartungen zu widersprechen. Die Wandgängigkeit des Ankerrührers führt nicht nur zu einer Stoßbeanspruchung, sondern auch zu einem Zerdrücken an der Wand. Je elastischer die Partikel, desto weniger werden sie durch Zerdrücken beansprucht. Die Partikel c=0,8 % sind elastischer als Partikel mit einer Konzentration von c=1,0 % und werden somit weniger durch Zerdrücken an der Wand beschädigt, sodass der Anteil der beschädigten Partikel geringer ist.

Des Weiteren spiegelt Abb. 41 die Ergebnisse der Versuche aus Kapitel 5.2 wieder. Auch bei den Versuchen zur unterschiedlichen Festigkeit der Agarwürfel, stellt sich der Blattrührer (Ø 106 mm) als der scherintensivste Rührer heraus, dicht gefolgt vom Ankerrührer – beim Vergleich über die Drehzahl. Der Propellerrührer hingegen ist der scherärmste der drei vorgestellten Rührer.
5.5 Erhöhte Viskosität der kontinuierlichen Phase

Um den Einfluss der kontinuierlichen Phase auf die Beanspruchung der Agarwürfel zu untersuchen, wird die kontinuierliche Phase mit Glucosesirup angedickt. Da es sich bei Glucosesirup um ein newtonsches Fluid handelt, ist die Viskosität im Rührbehälter von der Schergeschwindigkeit unabhängig. Für die folgenden Versuche wird eine Viskosität der kontinuierlichen Phase von ca. 2,5 Pas (siehe Kapitel 4.2.7) eingestellt. Die Konzentration der Agarwürfel ist c=1,0 % und die Drehzahl beträgt 250 U/min. Für das Ergebnis können unterschiedliche Erwartungen ange stellt werden. Zum einen kann die Beanspruchung der Partikel mit Erhöhung der Viskosität steigen. Da die Strömung mit Erhöhung der Viskosität laminarer wird, verringert sich auch die Geschwindigkeit der einzelnen Partikel und somit ist die Stoßbeanspruchung durch den Aufprall des Rührorgans auf die Partikel größer. Zum anderen kann die Beanspruchung der Partikel mit Erhöhung der Viskosität sinken. Eine Erklärung hierfür könnte sein, dass die Strömung laminarer wird und die Partikel dadurch nicht so stark von der Strömung beansprucht werden können.

![Abb. 42: Blattrührer Ø 106 mm – Prozentualer Anteil der beschädigten Agarwürfel in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser und Glucoselösung)](image)

Partikel mit Erhöhung der Viskosität der kontinuierlichen Phase verringert. Abb. 44 stellt die Ergebnisse für den Ankerrührer dar.

![Graphik](image.png)

Abb. 44: Ankerrührer - Prozentualer Anteil der beschädigten Partikel in Abhängigkeit von der Rührzeit (250 U/min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser oder Glucoselösung)

Abb. 45 zeigt den Anteil der beschädigten Partikel in Abhängigkeit von der kontinuierlichen Phase (250 U/min, t=10 min, Agarwürfel (c=1,0 %)).

Insgesamt lässt sich feststellen, dass die Beanspruchung der Agarwürfel mit Erhöhung der Viskosität der kontinuierlichen Phase sinkt. Für den Ankerrührer kann diese Aussage nicht bestätigt, aber auch nicht widerlegt werden, da die Ergebnisse der verschiedenen kontinuierlichen Phasen nahezu identisch sind – ausgenommen bei einer Rührzeit von einer Minute.

Um den Einfluss der Reynoldszahl auf die Beschädigung der Partikel zu überprüfen, wird die Reynoldszahl für Wasser und Glucoselösung berechnet. Dies ermöglicht einen Vergleich des Einflusses der Drehzahlen und der Viskosität der Lösung auf die Beanspruchung der Agarwürfel. Abb. 46 stellt die Ergebnisse exemplarisch für den großen Blattrührer mit einem Durchmesser von 106 mm dar.

Abb. 46: Blattrührer Ø 106 mm - Anteil der beschädigten Partikel bei verschiedenen Drehzahlen und kontinuierlichen Phasen in Abhängigkeit von der Reynoldszahl (t=1 min, Agarwürfel (c=1,0 %), kontinuierliche Phase: Wasser und Glucoselösung)
6 Schlussfolgerung und Ausblick

Die Versuche haben gezeigt, dass die Übertragung der bereits vorliegenden Ergebnisse aus der Emulsionstechnik, Bioverfahrenstechnik oder Untersuchungen von Flockensystemen nicht auf die Beanspruchung scherempfindlicher Stoffsysteme im Rührprozess möglich ist. Bei den bisherigen Untersuchungen wird die Größe der Partikel nicht berücksichtigt und es handelt sich um vollständig andere Stoffsysteme.

Durch die Texturmessung der Agarwürfel/-kugeln vor Versuchsbeginn konnte gezeigt werden, dass Agar als Referenzprodukt für Frucht- und Gemüsestücke durchaus geeignet ist, da die Festigkeit von aufgetauten Fruchtwürfeln durch unterschiedliche Konzentrationen der Agarlösung eingestellt werden konnte. In der vorliegenden Arbeit erfolgte der Vergleich der Rührorgane ausschließlich über die Drehzahl. Bei den Versuchen zur Charakterisierung der Rührorgane wurde der Anteil der beschädigten Partikel in Abhängigkeit von der Rührzeit bestimmt, wobei alle übrigen Parameter (Drehzahl, Form der Partikel, Konzentration der Partikel, Viskosität der kontinuierlichen Phase) identisch waren. Hierbei stellte sich der 4-Blattrührer als der scherintensivste Rührer heraus, dicht gefolgt vom Blattrührer (Ø 106 mm) und vom Ankerrührer. Die 4-Blattrührer eckig, oval und oval 45° zeigten eine geringere Beanspruchung der Partikel. Als die scherärmsten Rührer erwiesen sich der Blattrührer (Ø 81 mm) und der Propellerrührer.

7 Zusammenfassung

Die Texturmessung der Frucht- und Agarwürfel zeigte, dass Agar als Referenzprodukt geeignet ist. Die nachfolgenden Versuche wurden ausschließlich optisch ausgewertet und dienten der Charakterisierung der Rührorgane. Beim Vergleich über die Drehzahl (250 U/min) stellte sich der 4-Blattrührer gr. eckig als der scherintensivste Rührer heraus, dicht gefolgt vom Blattrührer (Ø 106 mm) und vom Ankerrührer. Die 4-Blattrührer eckig, oval und oval 45° zeigten eine geringere Beanspruchung der Partikel. Als die scherärmsten Rührer stellten sich der Blattrührer (Ø 81 mm) und der Propellerrührer heraus. Erhöht man den Anteil der Agarwürfel im Rührprozess, so erhöht sich auch die Beanspruchung der Partikel. Mit Abnahme der Festigkeit der Agarwürfel kommt es zur Zunahme der Beanspruchung der Partikel. Durch
die Erhöhung der Viskosität der kontinuierlichen Phase wurde der Anteil der beschädigten Partikel verringert.

Die Ergebnisse können zum Einstellen von Rührprozessen mit großen scherempfindlichen Partikeln genutzt werden, was bedeutet, dass die Prozessparameter so eingestellt werden können, dass eine Beschädigung der Partikel vermieden werden kann.
Abbildungsverzeichnis

Abb. 1: Strömungsbild unterschiedlicher Rührorgane (Knoch 2000) .. 5
Abb. 2: Effektivwerte der turbulenten Schwankungsgeschwindigkeit (Lohr 1975) 6
Abb. 3: Schematische Darstellung der Schwankungsgeschwindigkeit (Wille 2000) 6
Abb. 4: Kaskadenartiger Zerfall der Makrowirbel (Bodenschatz 2009) 8
Abb. 5: Schergefälle in einem Fluidelement (Pahl, Gleißle, Laun 1991) 9
Abb. 6: Fettkugelzerfall beim Homogenisieren (Kessler 1992) .. 12
Abb. 7: Bild und schematische Abbildung des Versuchsstandes .. 20
Abb. 8: Bilder der verwendeten Rührer ... 21
Abb. 9: Agarplatte nach dem Gießen und Abkühlen ... 24
Abb. 10: Herstellen der Agarwürfel mit einem Teigschneider ... 24
Abb. 11: Versuchstand für die Herstellung der Agarkugeln ... 25
Abb. 12: Herstellung der Agarkugeln .. 26
Abb. 13: Prüfgeometrie des Winopal Texture Analysers ... 26
Abb. 14: Kraft-Weg-Diagramm für einen Agarwürfel c=1,0 % ... 27
Abb. 15: Rührblätter des modifizierbaren Rührorgans ... 28
Abb. 16: Viskositätsfunktion der kontinuierlichen Phase ... 30
Abb. 17: Kategorien der Agarwürfel nach der Scherbeanspruchung 31
Abb. 18: Fraktionen der Agarwürfel nach dem Grad ihrer Beschädigung 32
Abb. 19: Normalspannung beim Aufbrechen der Agar- und Fruchtwürfel 33
Abb. 20: Ankerrührer - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 35
Abb. 21: Ankerrührer - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 36
Abb. 22: Blattrührer Ø 106 mm - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 37
Abb. 23: Blattrührer Ø 81 mm - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 38
Abb. 24: Propellerrührer - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 39
Abb. 25: Alle Rührer, 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser) 40
Abb. 26: Blattrührer Ø 106 mm - t=10 min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 41
Abb. 27: Vergleich der Rührer - Agarwürfel (c=1,0 %), t=10 min, kont. Phase: Wasser 42
Abb. 28: 4-Blattrührer oval - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 44
Abb. 29: 4-Blattrührer eckig - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 44
Abb. 30: 4-Blattrührer gr. eckig - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser ... 44
Abb. 31: 4-Blattrührer oval 45° - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser ... 45
Abb. 32: Rührervergleich: 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser 47
Abb. 33: Grenzdrehzahl in Abhängigkeit von der Agarkonzentration (anhand der Drehzahl) 49
Abb. 34: Grenzdrehzahl in Abhängigkeit von der Agarkonzentration (Vergleich anhand der Umfangsgeschwindigkeit) .. 50
Abb. 35: Untersch. Anteil der Agarwürfel/-kugeln im Rührbehälter (Blattrührer 106 mm, 150 U/min, t=20 min, Agar (c=1,0 %), kont. Phase: Wasser) ... 51
Abb. 36: Untersch. Anteil der Agarwürfel (t=20 min, 150 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser) ... 53
Abb. 37: Untersch. Anteil der Agarkugeln (t=20 min, 150 U/min, Agarkugeln (c=1,0 %), kont. Phase: Wasser) .. 54
Abb. 38: Blattrührer Ø 106 mm – Untersch. Festigkeit (250 U/min, Agarwürfel, kont. Phase: Wasser) ... 55
Abb. 39: Propellerrührer - Untersch. Festigkeit (250 U/min, Agarwürfel, kont.Phase: Wasser) .. 56
Abb. 40: Ankerrührer - Untersch. Festigkeit (250 U/min, Agarwürfel, kont. Phase: Wasser) 57
Abb. 41: Rührervergleich - Untersch. Festigkeit (250 U/min, t=10 min, Agarwürfel, kont. Phase: Wasser) ... 58
Abb. 42: Blattrührer Ø 106 mm - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser und Glucoselösung .. 59
Abb. 43: Propellerrührer - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser und Glucoselösung ... 60
Abb. 44: Ankerrührer - 250 U/min, Agarwürfel (c=1,0 %), kont. Phase: Wasser oder Glucoselösung ... 61
Abb. 45: Rührervergleich - 250 U/min, t=10 min, Agarwürfel (c=1,0 %), kont.Phase: Wasser oder Glucoselösung ... 62
Abb. 46: Blattrührer Ø 106 mm - t=1 min, Agarwürfel (c=1,0 %), kont. Phase: Wasser und Glucoselösung .. 63
Tabellenverzeichnis

Tab. 1: Verwendetes Material .. 18
Tab. 2: Daten der verwendeten Rührer .. 21
Tab. 3: Reynoldszahl der verwendeten Rührorgane für Wasser als kontinuierliche Phase 22
Tab. 4: Reynoldszahl der verwendeten Rührorgane für Glucoselösung .. 22
Tab. 5: Rezeptur der Agarlösung .. 23
Tab. 6: Rezeptur einer Standardfruchtzubereitung (DIL) ... 29
Tab. 7: Blattgeometrie verschiedener Rührer .. 43
Literaturverzeichnis

Kramer H.W.: Der Einfluss von Scherkräften in Bioreaktoren auf Proliferation und Syntheseleistung tierischer Zellen. Dissertation Nr.8665, ETH Zürich, 1980

Metzner A. B., Otto R. O.: Agitation of non-newtonian Fluids. A.I.Ch.E.J 3 (1) S.3-11, 1957

www.lebensmittellexikon.de/a0000120.php (18.04.2012, 14:22 Uhr)
Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Weiterhin erkläre ich, dass die vorliegende Arbeit noch nicht im Rahmen eines anderen Prüfungsverfahrens eingereicht wurde.

Anna-Lena Kraft Quakenbrück, den 30.Juni 2012